A Note on the \(w\)-Global Transform of Mori Domains

Fang Gui WANG

Institute of Mathematics and Software Science, Sichuan Normal University, Sichuan 610068, P. R. China

Abstract Let \(R\) be a domain and let \(R^{wg}\) be the \(w\)-global transform of \(R\). In this note it is shown that if \(R\) is a Mori domain, then the \(t\)-dimension formula \(t\)-dim\((R^{wg}) = t\)-dim\((R) - 1\) holds.

Keywords Mori domain; maximal \(w\)-ideal; the \(w\)-global transform.

Throughout this paper \(R\) denotes a domain with quotient field \(K\). Matijevic in [6] had introduced the notion of the global transform of \(R\), which is defined to be the set

\[R^g = \{ x \in K \mid M_1 \cdots M_n x \subseteq R, \text{ where } M_i \in \text{Max}(R) \}, \]

and shown that if \(R\) is Noetherian, then any ring \(T\) such that \(R \subseteq T \subseteq R^g\) is Noetherian. We have known that Mori domains have the ascending chain condition on divisorial ideals and strong Mori domains have the ascending chain condition on \(w\)-ideals. Every strong Mori domain is a Mori domain, but a Mori domain is not necessarily a strong Mori domain. Park [7] proved the \(w\)-analogue of Matijevic result, that is, if \(R\) is a strong Mori domain, then any \(w\)-overring \(T\) in the \(w\)-global transform \(R^{wg}\) of \(R\) is also a strong Mori domain. In this note we give the relationship of \(t\)-dimension of \(R\) and \(R^{wg}\) for a Mori domain \(R\).

Let \(A\) be a fractional ideal of \(R\). Define \(A^{-1} = \{ x \in K \mid xA \subseteq R \}\) and set \(A_v = (A^{-1})^{-1}\). If \(A = A_v\), then \(A\) is called a \(v\)-fractional ideal. We also define \(A_t = \bigcup B_v\), where \(B\) ranges over finitely generated fractional subideal of \(A\). If \(A_t = A\), then \(A\) is called a \(t\)-fractional ideal. Let \(J\) be a finitely generated ideal of \(R\). \(J\) is called a \(GV\)-ideal, denoted by \(J \in GV(R)\), if \(J^{-1} = R\). Define

\[A_w = \{ x \in K \mid Jx \subseteq A \text{ for some } J \in GV(R) \}. \]

If \(A_w = A\), then \(A\) is called a \(w\)-fractional ideal, equivalently, the condition \(x \in K\) and \(J \in GV(R)\) with \(Jx \subseteq A\) implies \(x \in A\). For the discussion on \(t\)-ideals and \(w\)-ideals, readers can consult the

Received May 11, 2008; Accepted January 5, 2009
Supported by the National Natural Science Foundation of China (Grant No. 10671137) and the Research Foundation for Doctor Programme (Grant No. 20060636001).
E-mail address: wangfg2004@163.com
literature [5] and [10]. Let $R \subseteq T$ be an extension of domains. We say that T is an overring of R if $T \subseteq K$. Let T be an overring of R. Following [11] and [7], we call T a w-overring if T as an R-module is a w-module.

Let P be a prime t-ideal of R. We denote by t-ht P the supremum of the lengths n of all chains $0 \subseteq P_n \subseteq P_{n-1} \subseteq \cdots \subseteq P_1 = P$, where $P_1, \ldots, P_{n-1}, P_n$ are prime t-ideals of R. Define t-$\dim(R) = \sup\{t$-ht $P\}$, where P ranges over all prime t-ideals of R.

Denote by w-$\text{Max}(R)$ the set of maximal w-ideals of R. Following the notation of Park [7], we denote

$$R^{wg} = \{x \in K \mid P_1 \cdots P_n x \subseteq R \text{ for some } P_1, \ldots, P_n \in w$-$\text{Max}(R)\}.$$

Then R^{wg} is an overring of R contained in K and is called w-global transform of R.

Let B be a fractional ideal of R. Define similarly the w-global transform of B to be the set

$$B^{wg} = \{x \in K \mid P_1 \cdots P_n x \subseteq B \text{ for some } P_1, \ldots, P_n \in w$-$\text{Max}(R)\}.$$

Lemma 1 R^{wg} is a w-overring of R.

Proof See [7, Corollary 1.7].

Lemma 2 (1) Let B_1 and B_2 be fractional ideals of R with $B_1 \subseteq B_2$. Then $(B_1)^{wg} \subseteq (B_2)^{wg}$.

(2) Let B be a fractional ideal of R. Then B^{wg} is a fractional ideal of R^{wg}.

(3) If B is an ideal of R, then $B^{wg} = R^{wg}$ if and only if there are $P_1, \ldots, P_n \in w$-$\text{Max}(R)$ such that $P_1 \cdots P_n \subseteq B$. Therefore, if Q is a prime ideal of R, then $Q^{wg} = R^{wg}$ if and only if $P \subseteq Q$ for some $P \in w$-$\text{Max}(R)$.

(4) Let A be an ideal of R^{wg} and let $B = A \cap R$. Then $A \subseteq B^{wg}$.

Proof It is straightforward.

Lemma 3 (1) Let Q be a prime ideal of R such that $P \not\subseteq Q$ for any $P \in w$-$\text{Max}(R)$. Then Q^{wg} is a prime ideal of R^{wg} and $Q^{wg} \cap R = Q$.

(2) Let Q_1 and Q_2 be prime ideals of R with $P \not\subseteq Q_1, Q_2$ for any $P \in w$-$\text{Max}(R)$. Then $(Q_1)^{wg} = (Q_2)^{wg}$ if and only if $Q_1 = Q_2$.

(3) Let A be a prime ideal of R^{wg} and let $Q = A \cap R$. If $P \not\subseteq Q$ for any $P \in w$-$\text{Max}(R)$, then $A = Q^{wg}$.

(4) Let Q be a prime ideal of R such that $P \not\subseteq Q$ for any $P \in w$-$\text{Max}(R)$. Then $\text{ht} Q^{wg} = \text{ht} Q$.

Proof (1) By Lemma 2, $Q^{wg} \neq R^{wg}$. Let $x, y \in R^{wg}$ with $xy \in Q^{wg}$. Then there are $P_1, \ldots, P_n, P_{n+1}, \ldots, P_m \in w$-$\text{Max}(R)$ such that $P_1 \cdots P_n x \subseteq R$, $P_{n+1} \cdots P_m y \subseteq R$, and $P_1 \cdots P_n P_{n+1} \cdots P_m x y \subseteq Q$. Hence $P_1 \cdots P_n x \subseteq Q$ or $P_{n+1} \cdots P_m y \subseteq Q$, that is, $x \in Q^{wg}$ or $y \in Q^{wg}$. Then Q^{wg} is a prime ideal of R^{wg}.

It is clear that $Q \subseteq Q^{wg} \cap R$. Conversely, let $a \in Q^{wg} \cap R$. Then $P_1 \cdots P_n a \subseteq Q$ for $P_1, \ldots, P_n \in w$-$\text{Max}(R)$. Since $P_1 \not\subseteq Q$, we have $a \in Q$. Hence $Q = Q^{wg} \cap R$.

(2) If $(Q_1)^{wg} = (Q_2)^{wg}$, then $Q_1 = (Q_1)^{wg} \cap R = (Q_2)^{wg} \cap R = Q_2$.

Lemma 4
(1) Let B be a fractional ideal of R. Then, as fractional ideals of R^w, $(B^{-1})^w \subseteq (B^w)^{-1}$.

(2) Let B be a t-finite type fractional ideal of R. Then $(B^{-1})^w = (B^w)^{-1} = (BR^w)^{-1}$.

(3) Let R be a Mori domain and let B be a fractional ideal of R. Then, as fractional ideals of R^w, $(B^w)_v = (BR^w)_v = (B_v)^w$. Therefore, if B is a v-ideal of R, then B^w is a v-ideal of R^w.

(4) Let R be a Mori domain and let A be an ideal of R^w. Then $A_v = (B_v)^w$, where $B = A \cap R$. Therefore, if A is a v-ideal of R^w, then $B = A \cap R$ is a v-ideal of R and $A = B^w = (BR^w)_v$.

(5) Let R be a Mori domain and let B be an ideal of R. Then $(B^w)^{-1} = R^w$ if and only if there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n \subseteq B_v$. Therefore, $(PR^w)^{-1} = R^w$ for any $P \in w\text{-Max}(R)$.

(6) Let R be a Mori domain and let A be an ideal of R^w. Then $A_v = R^w$ if and only if there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n \subseteq B_v$, where $B = A \cap R$.

Proof
(1) Let $x \in (B^{-1})_x$. There are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n x \subseteq B^{-1}$. For any $y \in B^w$, take $P_{n+1}, \ldots, P_m \in w\text{-Max}(R)$ such that $P_{n+1} \cdots P_m y \subseteq B$. Thus $P_1 \cdots P_m xy \subseteq B^{-1} B \subseteq R$. Hence $xy \in R^w$. Thus $x \in (B^w)^{-1}$, whence, $(B^{-1})^w \subseteq (B^w)^{-1}$. From $BR^w \subseteq B^w$, we have $(BR^w)^{-1} \subseteq (B^w)^{-1}$.

(2) It suffices by (1) to show that $(BR^w)^{-1} \subseteq (B^{-1})^w$. Let $x \in (BR^w)^{-1}$. Since B is of t-finite type, there is a finitely generated fractional subideal J of B such that $B_v = J_v$, therefore, $J^{-1} = B^{-1}$. Because $xJ \subseteq xB \subseteq R^w$ and J is finitely generated, there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n J x \subseteq R$. Then $P_1 \cdots P_n x \in J^{-1} = B^{-1}$. Hence $x \in (B^{-1})^w$. Thus we have $(BR^w)^{-1} \subseteq (B^{-1})^w$.

(3) This follows from (2) since B^{-1} is also of t-finite type in a Mori domain.

(4) Since $BR^w \subseteq A \subseteq B^w$ by Lemma 2 (4), we have $(BR^w)_v \subseteq A_v \subseteq (B^w)_v$. Hence $A = (B_v)^w$ by (3).

Suppose A is a v-ideal of R^w. Since $BR^w \subseteq A \subseteq B^w$, we have $(BR^w)_v \subseteq A \subseteq (B_v)^w$. Hence $A = (BR^w)_v = (B_v)^w$. Then $B_v \subseteq A \cap R = B$, that is, $B = B_v$. Hence $A = B^w = (BR^w)_v$.

(5) From (3), $(B^w)^{-1} = R^w$ if and only if $(B_v)^w = R^w$, if and only if there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n \subseteq B_v$ by Lemma 2.

(6) It is direct from (4) and (5). □

Proposition 5
Let R be a Mori domain and let A be a w-ideal of R^w. Then $B = A \cap R$ is a...
w-ideal of R and $A = B^{w^g} = (BR^{w^g})_w$.

Proof By [11, Lemma 3.1], B is a w-ideal of R. Since $B \subseteq A$, we have $BR^{w^g} \subseteq A \subseteq B^{w^g}$. Hence $(BR^{w^g})_w \subseteq A \subseteq B^{w^g}$. Let $x \in B^{w^g}$. Then there are $P_1, \ldots, P_n \in w$-$\text{Max}(R)$ such that $P_1 \cdots P_n x \subseteq B$. Let I_i be a finitely generated subideal of P_i such that $P_i = (I_i)_v$ for $i = 1, \ldots, n$. Thus $I_1 \cdots I_n x \subseteq B$. By Lemma 4, $I_1 R^{w^g} \in GV(R^{w^g})$. Then $x \in (BR^{w^g})_w$, and hence $A = (BR^{w^g})_w = B^{w^g}$. □

Proposition 6 (1) Let R be a Mori domain. Then R^{w^g} is also a Mori domain.

(2) Let R be a strong Mori domain. Then R^{w^g} is also a strong Mori domain.

Proof (1) It follows from Lemma 4. Also see [8, Théorème 2].

(2) It follows from Proposition 5. Also see [7, Theorem 1.5 & Corollary 1.7]. □

Theorem 7 Let R be a Mori domain. Let A be a maximal v-ideal of R^{w^g} and set $B = A \cap R$. Then, for any $P \in w$-$\text{Max}(R)$, $P \not\subseteq B$, and B is a maximal prime v-subideal of P for any maximal v-ideal P of R with $B \subseteq P$.

Proof For any $P \in w$-$\text{Max}(R)$, then P is a v-ideal because R is a H-domain by [5]. Write $P = J_v$, where J is a finitely generated subideal of P. By Lemma 4(6), $JR^{w^g} \in GV(R^{w^g})$. Hence $P \not\subseteq B$.

By Lemma 4, B is a prime v-ideal of R and $A = B^{w^g}$. Let P be a maximal w-ideal of R with $B \subseteq P$ and let Q be a prime v-ideal of R with $B \subseteq Q \subseteq P$. If $Q \neq P$, then Q^{w^g} is a prime v-ideal of R^{w^g} by Lemma 3 and Lemma 4. Hence $A = Q^{w^g}$ by the maximality of A. Then $B = Q$ by Lemma 3 again. □

Theorem 8 Let R be a Mori domain (but not a field). Then t-$\text{dim}(R^{w^g}) = t$-$\text{dim}(R) - 1$.

Proof Let $A_n \subseteq A_{n-1} \subseteq \cdots \subseteq A_1 \subseteq A_0$ be a chain of prime v-ideals of R^{w^g}. Set $B_i = A_i \cap R$ for $i = 0, 1, \ldots, n$. Then B_i is a prime v-ideal of R by Lemmas 3 and 4, and $B_n \subseteq B_{n-1} \subseteq \cdots \subseteq B_1 \subseteq B_0$ be a chain of prime v-ideals of R. By Theorem 7, B_0 is not a maximal t-ideal of R. Hence t-$\text{dim}(R^{w^g}) \leq t$-$\text{dim}(R) - 1$. Conversely, let $B_n \subseteq B_{n-1} \subseteq \cdots \subseteq B_1 \subseteq B_0$ be a chain of prime v-ideals of R such that B_0 is not maximal v-ideal of R. By Lemma 3, $B_n^{w^g} \subset B_{n-1}^{w^g} \subset \cdots \subset B_1^{w^g} \subseteq B_0^{w^g}$ is a chain of prime v-ideals of R^{w^g}. Hence t-$\text{dim}(R^{w^g}) \geq t$-$\text{dim}(R) - 1$. □

Corollary 9 Let R be a Mori domain. If t-$\text{dim}(R) = 1$, then $R^{w^g} = K$.

Proof Since t-$\text{dim}(R) = 1$, we have t-$\text{dim}(R^{w^g}) = 0$ by Theorem 8. Hence R^{w^g} is a field, that is, $R^{w^g} = K$. □

References

