On X-Semipermutability of Some Subgroups of Finite Groups

Jin Bao LI1,*, Li Ping HAO2, Xiao Lan YI3

1. School of Mathematics and Statistics, Southwest University, Chongqing 400715, P. R. China; 2. School of Mathematical Sciences, Xuzhou Normal University, Jiangsu 221116, P. R. China; 3. Department of Mathematics, Zhejiang University, Zhejiang 310007, P. R. China

Abstract Let A be a subgroup of a group G and X a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we try to use the X-semipermutability of some subgroups to characterize the structure of finite groups.

Keywords finite groups; X-semipermutable subgroups; supersoluble groups; p-nilpotent groups.

Document code A
MR(2000) Subject Classification 20D10; 20D15; 20D20
Chinese Library Classification O152.1

1. Introduction

All groups in this paper will be finite.

Let A and B be subgroups of a group G. A is said to be permutable with B if $AB = BA$. A is said to be a permutable subgroup (or quasinormal subgroup) of G if A is permutable with all subgroups of G (see [13]). The permutable subgroups have many interesting properties. For example, Ore [13] proved that every permutable subgroup of a group G is subnormal in G. Ito and Scép [10] proved that for every permutable subgroup H of a group G, H/H_G is nilpotent. However, two subgroups H and T of a group G may not be permutable in G, but G may contain an element x such that $HT^x = T^xH$. Basing on the observation, Guo, Shum and Skiba [4, 5, 7] recently introduced the following generalized permutable subgroups. Let A and B be subgroups of a group G and X a nonempty subset of G. Then A is said to be X-permutable with B if there exists some $x \in X$ such that $AB^x = B^xA$; A is said to be X-permutable (or X-quasinormal) in G if for every subgroup K of G there exists some $x \in X$ such that $AK^x = K^xA$; A is said to be X-semipermutable in G if A is X-permutable with all subgroups of some supplement T of A in G (see [4]). By using the generalized permutable subgroups, one has obtained some important results [4–7, 9, 11, 12, 15].

Supported by the National Natural Science Foundation of China (Grant Nos. 10771172; 10771180).

* Corresponding author
E-mail address: leejinbao25@163.com (J. B. LI)
As a continuation, we try to use some $F(G)$-semipermutable subgroups to determine the structure of finite groups, where $F(G)$ is the Fitting subgroup of a group G. Some new interesting results are obtained.

For notations and terminologies not given in this paper, the reader is referred to [3] and [14].

2. Preliminaries

We cite here some known results which are useful in the sequel.

Lemma 2.1 ([4, Lemma 2.4]) Let A and X be subgroups of a group G. Then the following statements hold:

(1) If N is a permutable subgroup of G and A is X-semipermutable in G, then NA is an X-semipermutable subgroup of G.

(2) If N is normal in G, A is X-semipermutable in G and T is a supplement of A in G such that every subgroup of T is X-permutable with A, then AN/N is $X \cap N/N$-semipermutable in G/N and TN/N is a supplement of AN/N in G/N such that every subgroup of TN/N is $X \cap N/N$-permutable with AN/N.

(3) If A/N is $X \cap N/N$-semipermutable in G/N and T/N is a supplement of A/N in G/N such that every subgroup of T/N is $X \cap N/N$-permutable with A/N, then A is X-semipermutable in G and T is a supplement of A in G such that every subgroup of T is X-permutable with A.

(4) If A is X-semipermutable in G and $A \leq D \leq G$, $X \leq D$, then A is X-semipermutable in D.

(5) If A is a maximal subgroup of G, T is a minimal supplement of A in G and every subgroup of T is G-permutable with A, then $T = \langle a \rangle$ is a cyclic p-subgroup for some prime p and $a^p \in A$.

(6) If A is X-semipermutable in G, T is a supplement of A in G such that A is X-permutable with every subgroup of T and $A \leq N_G(X)$, then T^x is a supplement of A in G such that every subgroup of T^x is X-permutable with A, for all $x \in G$.

(7) If A is X-semipermutable in G and $X \leq D$, then A is D-semipermutable in G.

Lemma 2.2 ([8, Lemma 2.6]) Let H be a nilpotent normal subgroup of a group G. If $H \neq 1$ and $H \cap \Phi(G) = 1$, then H has a complement in G and H is a direct product of some minimal normal subgroups of G.

Lemma 2.3 ([11, Lemma 3.3]) Let G be a group and X a normal p-soluble subgroup of G. Then G is p-soluble if and only if a Sylow p-subgroup P of G is X-permutable with all Sylow q-subgroups of G, where $q \neq p$.

Lemma 2.4 Let G be a soluble group and N a minimal normal subgroup of G. If every minimal subgroup of N is G-semipermutable in G, then N is cyclic of prime order.

Proof Obviously N is an elementary abelian p-group for some prime p. By Jordan-Hölder theorem, we can choose a minimal subgroup A of N such that A is normal in some Sylow p-
subgroup P of G. By the hypothesis, A has a supplement T in G such that every subgroup of T is G-permutable with A. Let D be a Hall p'-subgroup of T. Then $E = AD^x = D^xA$ for some $x \in G$. Since A is subnormal in G, A is subnormal in E. Then since D^x is a Hall p'-subgroup of G, $D^x \leq N_G(A)$. It follows that $G \leq N_G(A)$. The minimal choice of N implies that $N = A$ and thereby N is cyclic of order p.

3. Main results

Theorem 3.1 Let G be a group. Then G is supersoluble if the normalizer of every Sylow subgroup of G is $F(G)$-semipermutable in G.

Proof We first prove that G is soluble. Let p be the maximal prime dividing $|G|$ and G_p a Sylow p-subgroup of G. Assume that G_p is normal in G and Q/G_p is a Sylow q-subgroup of G/G_p, where $q \neq p$. Then $Q/G_p = G_qG_p/G_p$ for some Sylow q-subgroup G_q of G and $N_G/G_p(Q/G_p) = N_G(G_q)G_p/G_p$. By Lemma 2.1, we see that $N_G(G_p)(Q/G_p)$ is $F(G/G_p)$-permutable in G/G_p. This shows that G/G_p satisfies the hypothesis. Hence G/G_p is soluble by induction on $|G|$. It follows that G is soluble. Now assume that $N_G(G_p) < G$. By hypothesis, $N_G(G_p)$ is $F(G)$-semipermutable in G and so there exists a supplement T of $N_G(G_p)$ in G such that $N_G(G_p)$ is $F(G)$-permutable with every subgroup of T. Let T_q be any Sylow q-subgroup of T, where $q \neq p$. Then $N_G(G_p)T_q = T_qN_G(G_p)$ for some $x \in F(G)$. Put $L = N_G(G_p)T_q^x$. Then $|L : N_G(G_p)| = q^β$. We claim that there exists some $q \neq p$ such that $β ≠ 0$. If not, then $N_G(G_p) = G$, a contradiction. Assume that $β > 1$ and T_1 is a maximal subgroup of T_q. Then there exists some $y \in F(G)$ such that $L_1 = N_G(G_p)T_1^y$ is a subgroup of G. Let $|L_1 : N_G(G_p)| = q^β_1$, where $β_1 ≤ β$. If $β_1 ≠ 1$, then by the same argument we see that there exists an r-maximal subgroup T_r of T_q such that $|L_r : N_G(G_p)| = q$, where $L_r = N_G(G_p)T_r^z$ for some $z \in F(G)$. Therefore L_r has exactly q Sylow p-subgroups. By Sylow’s theorem, p divides $q - 1$, which is impossible since $p > q$. This contradiction shows that $N_G(G_p) = G$ and so G is soluble.

Now we prove that G is supersoluble by induction on $|G|$. Let N be a minimal normal subgroup of G and P/N a Sylow p-subgroup of G/N, where p divides $|G|$. Then $P/N = G_pN/N$ for some Sylow p-subgroup G_p of G. Hence $N_G/N(P/N) = N_G(G_p)/N/N$. Since $N_G(G_p)$ is $F(G)$-permutable in G, $N_G/N(P/N)$ is $F(G/N)$-permutable in G/N. Hence G/N is supersoluble by induction. Since the class of all supersoluble groups is a saturated formation, N is the unique minimal normal subgroup of G and $Φ(G) = 1$. Let M be a maximal subgroup of G such that N is not contained in M. Then $G = [N]M$ and $N = C_G(N) = F(G) = O_q(G)$ for some prime q. Let s be the largest prime dividing $|M|$ and M_s a Sylow s-subgroup of M. Then $N_G(M_s) = M$ since M is supersoluble and since N is the unique minimal normal subgroup of G. If $s ≠ q$, then M_s is a Sylow s-subgroup of G. By hypothesis and Lemma 2.1(5), we have that $[G : M] = q$ and so $|N| = q$, which implies that G is supersoluble. If $s = q$, then $O_q(G/C_G(N)) = O_q(G/N) ≠ 1$, which contradicts [3, Lemma 1.7.11]. Then the proof is thus completed. □

Corollary 3.2 Let G be a group. If the normalizer of every Sylow subgroup of G is $F(G)$-
quasinormal in G, then G is supersoluble.

Theorem 3.3 Let G be a group and M a supersoluble maximal subgroup of G. If M is $F(G)$-semipermutable in G and $F(G)$ is not contained in M, then G is supersoluble.

Proof If $\Phi(G) \not= 1$, then by Lemma 2.1 we easily see that $G/\Phi(G)$ satisfies the hypothesis and so $G/\Phi(G)$ is supersoluble by induction on $|G|$. This implies that G is supersoluble. Now assume that $\Phi(G) = 1$. By Lemma 2.2, $F(G)$ is a direct product of some minimal normal subgroups of G. Since $F(G)$ is not contained in M, $G = [N]M$, where N is a minimal normal subgroup of G contained in $F(G)$. By Lemma 2.1(5), we have that $|G : M| = p$ for some prime p. Since $G/N \cong M$ is supersoluble and $|N| = |G : M| = p$, we obtain that G is supersoluble. \(\blacksquare\)

Theorem 3.4 Let p be an odd prime dividing the order of a group G, P a Sylow p-subgroup of G and $X = O_{p'}(G)$. If $N_G(P)$ is p-nilpotent and every cyclic subgroup of P is X-semipermutable in G, then G is p-nilpotent.

Proof Assume that the assertion is false and let G be a counterexample of minimal order. Then we have the following claims:

1. Assume that $O_{p'}(G) \not= 1$. Then by using Lemma 2.1, we see that $G/O_{p'}(G)$ satisfies the hypothesis. Thus $G/O_{p'}(G)$ is p-nilpotent by the choice of G. Consequently G is p-nilpotent, a contradiction.

2. If M is a proper subgroup of G such that $P \leq M \leq G$, then M is p-nilpotent.

3. Assume that $O_p(G) = 1$ and $\{x_1, x_2, \ldots, x_n\}$ is a minimal generator set of P. Then by the hypothesis, for every i, $\langle x_i \rangle$ has a supplement T_i in G such that $\langle x_i \rangle$ is permutable with every subgroup of T_i. By Lemma 2.1(6), we see that $\langle x_i \rangle$ is permutable with every Sylow q-subgroup of G, where $q \not= p$. Then since $P = \langle x_1, x_2, \ldots, x_n\rangle$, P is permutable with every Sylow q-subgroup of G, where $q \not= p$. It follows from Lemma 2.3 that G is p-soluble and thereby $O_{p'}(G) > 1$ by (1), a contradiction. Hence (3) holds.

4. $G = PQ$, where Q is a Sylow q-subgroup of G and $q \not= p$.

Clearly the hypothesis still holds on $G/O_p(G)$. Hence $G/O_p(G)$ is p-nilpotent by the choice of G. Then by [2, Ch. 6, Theorem 3.5], for any prime q dividing the order of G with $q \not= p$, there exists a Sylow q-subgroup of G such that $E = PQ$ is a subgroup of G. If $E < G$, then E is p-nilpotent by (2). This leads to that $Q \leq C_G(O_p(G)) \leq O_p(G)$ (see [3, Theorem 1.8.19]), a contradiction. Thus $G = PQ$.

5. Final contradiction.

Let N be a minimal normal subgroup of G. Then N is an elementary abelian p-group because G is soluble by (4) and $O_{p'}(G) = 1$. It is easy to see that G/N satisfies the hypothesis. Hence
G/N is p-nilpotent by the choice of G. Since the class of all p-nilpotent groups is a saturated formation, N is the only minimal normal subgroup of G and Φ(G) = 1. Thus G = [N]M for some maximal subgroup M of G and N = C_G(N) = F(G) = O_p(G) = X. By Lemma 2.4, N is cyclic of order p. Since M ≅ G/N = G/C_G(N) is isomorphic to some subgroup of Aut(N), M is a p'-subgroup of G and so N is a Sylow p-subgroup of G. Then G = N_G(N) = N_G(P) is p-nilpotent by hypothesis. The final contradiction completes the proof. □

Remark 3.5 The assumption “N_G(P) is p-nilpotent” in Theorem 3.4 is essential. For example, let G = S_3 and p = 3. Then every subgroup of Sylow 3-subgroup of G is O_p^2(G)-semipermutable in G, but G is not 3-nilpotent.

However, if p is the smallest prime dividing the order of G, then we have the following result.

Theorem 3.6 Suppose that p is the smallest prime dividing the order of a group G and P is a Sylow p-subgroup of G. Let X = O_p^2(G). If every cyclic subgroup of P is X-semipermutable in G, then G is p-nilpotent.

Proof Assume that the assertion is false and let G be a counterexample of minimal order. Then

1. O_p^2(G) = 1.

Suppose that O_p^2(G) ≠ 1. Then it is easy to see that G/O_p^2(G) satisfies the hypothesis. The minimal choice of G implies that G/O_p^2(G) is p-nilpotent and so G is p-nilpotent, a contradiction.

2. O_p(G) ≠ 1.

Assume that O_p(G) = 1. Then X = 1 by (1). Let A be a minimal subgroup of P and T a supplement of A in G such that A is X-permutable with every subgroup of T. If A ∩ T = 1, then |G : T| = p and so T is normal in G (see [16, II, Proposition 4.6]). It is easy to see that T satisfies the hypothesis and hence T is p-nilpotent by the choice of G. If O_p^2(T) ≠ 1, then O_p^2(G) ≠ 1 because O_p^2(T) char T ≤ G. If O_p^2(T) = 1, then G is a p-group. This contradiction implies that A ∩ T = A. Thus G = T and so A is a permutable subgroup of G. By [14, (13.2.2)], A is subnormal in G and consequently A ≤ O_p(G) by [1, A, Lemma 8.6]. This contradiction shows that O_p(G) ≠ 1.

3. Φ(G) = 1.

By (1), we have F(G) = O_p(G). If Φ(G) ≠ 1, then Φ(G) ≤ O_p(G). Obviously, G/Φ(G) satisfies the hypothesis. Hence G/Φ(G) is p-nilpotent by the choice of G. It follows that G is p-nilpotent, a contradiction.

4. O_p(G) is a minimal normal subgroup of G.

By Lemma 2.2 and (3), O_p(G) is a direct product of some minimal normal subgroup of G. If O_p(G) is not a minimal normal subgroup of G, then obviously G/N satisfies the hypothesis for any minimal normal subgroup N of G contained in O_p(G). Hence G/N is p-nilpotent by choice of G. Since the class of all p-nilpotent groups is a saturated formation, O_p(G) must be a minimal normal subgroup of G.

5. The final contradiction.

If P is normal in G, then G/O_p(G) is a p'-subgroup and G is soluble. If P ≠ O_p(G), then
obviously $G/O_p(G)$ satisfies the hypothesis. Hence $G/O_p(G)$ is p-nilpotent. Let $K/O_p(G)$ be the normal p-complement of $P/O_p(G)$ in $G/O_p(G)$. Since p is the smallest prime dividing the order of G, $K/O_p(G)$ is soluble by the well known Feit-Thompson theorem. It follows that K is soluble and hence G is soluble. Then by (4) and Lemma 2.4, $O_p(G)$ is cyclic of order p. Let g be an element of G such that $(|g|, p) = 1$ and $E = O_p(G)\langle g \rangle$. Then $\langle g \rangle$ is normal in E by [14, (10.1.9)] and so $\langle g \rangle \leq C(G/O_p(G)) = O_p(G)$. The final contradiction completes the proof. \(\square\)

Remark 3.7 The condition that “every cyclic subgroup of P is X-semipermutable in G” in Theorem 3.6 cannot be replaced by “every minimal subgroup of P is X-semipermutable in G”. For example, let $G = \langle a, b \rangle \langle \alpha \rangle$, where $a^4 = 1$, $a^2 = b^2 = [a, b]$ and $a\alpha = b$, $b\alpha = ab$. Then G is a counterexample.

References