Maximal Armendariz Subrings Relative to a Monoid of Matrix Rings

Wen Kang WANG
School of Computer Science and Information Engineering, Northwest University for Nationalities, Gansu 730124, P. R. China

Abstract Let M be a monoid. Maximal M-Armendariz subrings of upper triangular matrix rings are identified when R is M-Armendariz and reduced. Consequently, new families of M-Armendariz rings are presented.

Keywords M-Armendariz ring; matrix ring; reduced ring.

Document code A
MR(2000) Subject Classification 16N60; 16P60
Chinese Library Classification O153.3

1. Introduction

Throughout this paper R denotes an associative ring with identity. According to Rege and Chhawchharia [1], a ring R is called Armendariz if, whenever $(\sum_{i=0}^{m} a_i x^i) (\sum_{j=0}^{n} b_j x^j) = 0$ in $R[x]$, $a_i b_j = 0$ for all i and j. A ring is called reduced if it has no non-zero nilpotent elements. Every reduced ring is Armendariz by Armendariz [2], but the more comprehensive study of the notion of Armendariz rings was carried out just recently (see Anderson and Camillo [3], Kim and Lee [4], Hong, Kim and Kwak [5], Huh, Lee and Smoktunowicz [6], Lee and Wong [7], Lee and Zhou [8], Liu [9], Hong, Kim and Twak [10]).

According to Liu [11], a ring R is called an M-Armendariz ring (an Armendariz ring relative to a monoid) if, whenever $(\sum_{i=1}^{m} a_i \alpha_i) (\sum_{j=1}^{n} b_j \beta_j) = 0$ in $R[M]$, $a_i b_j = 0$ for all i and j.

In this paper, we continue the study of M-Armendariz rings, and focus on the M-Armendariz property of certain subrings of upper triangular matrix rings.

We denote by $T_n(R)$ and $M_n(R)$ the $n \times n$ upper triangular matrix ring and matrix ring over R, respectively.

Let R be a ring. Define a subring F_n of upper triangular matrix ring $T_n(R)$ over R as follows:

$$F_n = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}.$$
Let M be a monoid. It was proved in Liu [11], Proposition 1.7 and Remark 1.8 that if R is M-Armendariz and reduced, then the ring F_3 is M-Armendariz but F_n is not M-Armendariz for $n ≥ 4$.

So, for an M-Armendariz and reduced ring R, it is interesting to find some maximal M-Armendariz subrings of $T_n(R)$. For this purpose, we define $S_{n,m}(R) =$

$$S_{n,m}(R) = \begin{pmatrix}
 a_1 & a_2 & \cdots & a_{m-1} & a_m & a_{1,m+1} & \cdots & a_{1,n-1} & a_{1,n} \\
 0 & a_1 & \cdots & a_{m-1} & a_{2,m+1} & \cdots & a_{2,n-1} & a_{2,n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & 0 & a_1 & a_{m-1,m+1} & \cdots & a_{m-1,n-1} & a_{m-1,n} \\
 0 & \cdots & 0 & a_1 & a_{m-1,m+1} & \cdots & a_{m-1,n-1} & a_{m-1,n} \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & 0 & \cdots & a_1 & a_{m-1,m+1} & \cdots & a_{m-1,n-1} \\
0 & \cdots & 0 & \cdots & a_1 & a_{m-1,m+1} & \cdots & a_{m-1,n-1} \\
\end{pmatrix},$$

where $a_{i,j}, a_{i,j} ∈ R$, and show that for any M-Armendariz and reduced ring R and all $2 ≤ m ≤ n - 1$, the ring $S_{n,m}(R)$ is a maximal M-Armendariz subring of $T_n(R)$. This is a generalization of Liu [11], Proposition 1.7 and Remark 1.8.

By the term “ring” we mean an associative ring with identity, and by a general ring we mean an associative ring with or without identity. For clarity, R will always denote a ring while a general ring will be denoted by I.

Let I be a general ring. Define a subring $D_n(I)$ of matrix ring $M_n(I)$ over I as follows:

$$D_n(I) = \left\{ \begin{pmatrix}
 a_1 & a_1 & \cdots & a_1 \\
 a_2 & a_2 & \cdots & a_2 \\
 \vdots & \vdots & \ddots & \vdots \\
 a_n & a_n & \cdots & a_n \\
\end{pmatrix} | a_i ∈ I \right\} \text{ for } n ≥ 2.$$}

We show that for any general M-Armendariz and reduced ring I, and $|M| ≥ 2$, $|I| ≥ 2$, the general ring $D_n(I)$ is a maximal general M-Armendariz subring of $M_n(I)$ for $n ≥ 2$.

2. Maximal M-Armendariz subrings of $T_n(R)$

Lemma 2.1 Let M be a monoid with $|M| ≥ 2$. If R is M-Armendariz and reduced, then $R[M]$ is reduced.

Proof The proof has been shown in the proof of Liu [11, Proposition 2.1]. \square

According to [8], for $A = (a_{i,j})$, $B = (b_{i,j}) ∈ M_n(R)$, we write $[A \cdot B]_{i,j} = 0$ to mean that $a_{i,l}b_{l,j} = 0$ for $l = 1, \ldots, n$. We identify $M_n(R)[M]$ with $M_n(R[M])$ canonically.

For $n ≥ 2$, let $V = \sum_{i=1}^{n-1} E_{i,i+1}$ where $E_{i,j} : 1 ≤ i, j ≤ n$ are the matrix units.

Lemma 2.2 Let M be a monoid. For $u = \sum_{i=1}^{m} A_iα_i$, $v = \sum_{j=1}^{k} B_jβ_j ∈ M_n(R)[M]$, let
Since \(a_{ij}^{(s)} \alpha_s \) and \(g_{ij} = \sum_{l=1}^{k} b_{ij}^{(l)} \beta_l \) where \(a_{ij}^{(t)} \) and \(b_{ij}^{(h)} \) are the \((i, j)\)-entries of \(A_t \) and \(B_h \), respectively, for \(l = 1, \ldots, m, h = 1, \ldots, k \). Then \(u = (f_{ij}), v = (g_{ij}) \). If \(R \) is \(M \)-Armendariz and \([u \cdot v]_{ij} = 0 \) for all \(i, j \), then \(A_iB_j = 0 \) for all \(i, j \).

Proof Since \([u \cdot v]_{ij} = 0 \) for all \(i, j \) and \(R \) is \(M \)-Armendariz, \(a_{ii}^{(s)} b_{ij}^{(t)} = 0 \) for all \(i, j \), where \(l = 1, \ldots, n \). Then \(A_iB_j = 0 \) for all \(i, j \).

Lemma 2.3 ([13, Theorem 2.3]) Let \(R \) be a reduced ring. If \(AB = 0 \) in \(S_{n,m}(R) \), then \([A \cdot B]_{ij} = 0 \) for all \(i, j \) and all \(2 \leq m \leq n \).

Theorem 2.4 Let \(M \) be a monoid with \(|M| \geq 2\). Then the following conditions are equivalent.

1. \(R \) is \(M \)-Armendariz and reduced;
2. \(S_{n,m}(R) \) is an \(M \)-Armendariz ring for all \(2 \leq m \leq n \).

Proof (1) \(\Rightarrow\) (2). Suppose that \(u = \sum_{s=1}^{p} A_s \alpha_s \), \(v = \sum_{j=1}^{p} B_j \beta_j \in S_{n,m}(R)[M] \) such that \(uv = 0 \). We need to prove that \(A_iB_j = 0 \) for all \(1 \leq i, j \leq p \). Let \(f_{ij} = \sum_{s=1}^{p} a_{ij}^{(s)} \alpha_s \) and \(g_{ij} = \sum_{l=1}^{k} b_{ij}^{(l)} \beta_l \) where \(a_{ij}^{(t)} \) and \(b_{ij}^{(h)} \) are the \((i, j)\)-entries of \(A_t \) and \(B_h \), respectively, for \(l = 1, \ldots, p \). Then \(u = (f_{ij}), v = (g_{ij}) \). By Lemma 2.3, \([u \cdot v]_{ij} = 0 \) for all \(i, j \), then \(A_iB_j = 0 \) for all \(1 \leq i, j \leq p \) by Lemma 2.2.

(2) \(\Rightarrow\) (1). Suppose that \(S_{n,m}(R) \) is \(M \)-Armendariz. Note that \(R \) is isomorphic to the subring

\[
\begin{pmatrix}
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\hline
0 & a & \cdots \\
\hline
0 & a & \cdots \\
\hline
\cdots & \cdots & \cdots \\
\hline
\end{pmatrix}
\]

of \(S_{n,m}(R) \). Thus \(R \) is \(M \)-Armendariz, since each subring of an \(M \)-Armendariz ring is also \(M \)-Armendariz. By analogy with the proof of Lee and Wong [7], Lemma 2.3, we can show that \(R \) is reduced.

Corollary 2.5 ([11, Proposition 1.7]) Let \(M \) be a monoid with \(|M| \geq 2\). Then the following conditions are equivalent.

1. \(R \) is \(M \)-Armendariz and reduced;
2. \(S_3 = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\} \) is \(M \)-Armendariz.

Theorem 2.6 Let \(M \) be a monoid with \(|M| \geq 2\) and \(R \) be an \(M \)-Armendariz ring and reduced. Then \(S_{n,m}(R) \) is a maximal \(M \)-Armendariz subring of \(T_n(R) \) for all \(2 \leq m \leq n - 1 \).

Proof Suppose that \(T \) is an \(M \)-Armendariz subring of \(T_n(R) \) and \(T \) properly contains \(S_{n,m}(R) \).

Take \(e \neq g \in M \), where \(e \) stands for the identity of \(M \). Then there exists \(A = (a_{ij}) \in T \) such that one of the following conditions holds:

1. \(a_{k-1,l-1} \neq a_{k,l} = 0 \) for some \(2 \leq k \leq l \leq m \);
2. \(a_{k,l} \neq a_{k+1,l+1} \) for some \(m \leq k \leq l \leq n - 1 \).

Case 1 Suppose that 1) holds. We can assume without loss of generality that \(a_{1,1+t} = a_{2,2+t} = \cdots = a_{m,} \)
$\cdots = a_{m-t,m}$ where $0 \leq t \leq l-k-1$, and $a_{1,l-k+1} = a_{2,l-k+2} = \cdots = a_{k-1,l-1}$. Let $V^0 = I_n$, and $A_1 = A - \sum_{t=0}^{l-k-1} a_{1,l-t+1} V^t - \sum_{t=0}^{l-k-1} a_{k-1,l-t} V^{l-k+t}$. Clearly $u = A_1 e - (a_{k-1,l-1} - a_{k,l}) V^{l-1} g \in T[M]$ and $v = E_{l,n} e + E_{l-k+1,n} g \in T[M]$. One easily checks that $uv = 0$ but $(a_{k-1,l-1} - a_{k,l}) V^{l-1} E_{l,n} = (a_{k-1,l-1} - a_{k,l}) E_{1,n} \neq 0$. Hence T is not an M-Armendariz ring.

Case 2 Suppose that 2) holds. We can assume without loss of generality that $a_{m,m+t} = a_{m+1,m+t+1} = \cdots = a_{n-t,n}$ where $0 \leq t \leq l-k-1$, and $a_{k+1,l+1} = a_{k+2,l+2} = \cdots = a_{k+t,n}$. Let $A_1 = A - \sum_{t=0}^{l-k-1} a_{m,m+t} V^t - \sum_{t=0}^{l-k-1} a_{k+1,l+t} V^{l-k+t}$. Then $u = (a_{k+1,l+1} - a_{k,l}) E_{1,k} e - E_{1,n-l+k} g$, $v = A_1 e + V^{n-k} g \in T[M]$. One checks that $uv = 0$, but $(a_{k+1,l+1} - a_{k,l}) E_{1,k} V^{n-k} = (a_{k+1,l+1} - a_{k,l}) E_{1,n} \neq 0$. Hence T is not an M-Armendariz ring. □

By using the same methods as in the proof of Theorem 2.6, we have the following Theorem 2.7.

Theorem 2.7 Let M be a monoid with $|M| \geq 2$ and R be an M-Armendariz ring and reduced. Then

$$F_2 = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in R \right\}$$

is a maximal M-Armendariz subring of $T_2(R)$, and

$$F_3 = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\}$$

is a maximal M-Armendariz subring of $T_3(R)$.

3. Maximal general M-Armendariz subrings of $M_n(I)$

Definition 3.1 A general ring I is called general reduced if it has no non-zero nilpotent elements.

Definition 3.2 Let M be a monoid. A general ring I is called general M-Armendariz if, whenever $(\sum_{i=1}^m a_i \alpha_i)(\sum_{j=1}^n b_j \beta_j) = 0$ in $I[M]$, $a_i b_j = 0$ for all i and j.

Let $D_n(I) = \left\{ \begin{pmatrix} a_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_n & \cdots & a_n \end{pmatrix} \mid a_i \in I \right\}$ for $n \geq 2$.

Theorem 3.3 Let M be a monoid. If I is a general M-Armendariz ring, then $D_n(I)$ is a general M-Armendariz subring of $M_n(I)$ for $n \geq 2$.

Proof Suppose that $f = \sum_{i=1}^m A_i \alpha_i$, $g = \sum_{j=1}^n B_j \beta_j \in D_n(I)[M]$, such that $fg = 0$. We need to prove that $A_i B_j = 0$ for all i and j.

Let

$$A_i = \begin{pmatrix} a_{1,i} & a_{1,i} & \cdots & a_{1,i} \\ a_{2,i} & a_{2,i} & \cdots & a_{2,i} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,i} & a_{n,i} & \cdots & a_{n,i} \end{pmatrix}, \quad B_j = \begin{pmatrix} b_{1,j} & b_{2,j} & \cdots & b_{n,j} \\ b_{1,j} & b_{2,j} & \cdots & b_{n,j} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1,j} & b_{2,j} & \cdots & b_{n,j} \end{pmatrix}$$
where $a_s^{(i)}, b_s^{(j)} \in I$ for $1 \leq s \leq n$ and $1 \leq i \leq m, 1 \leq j \leq k$, and let

$$f = \begin{pmatrix} f_1 & f_1 & \cdots & f_1 \\ f_2 & f_2 & \cdots & f_2 \\ \vdots & \vdots & \ddots & \vdots \\ f_n & f_n & \cdots & f_n \end{pmatrix}, \quad g = \begin{pmatrix} g_1 & g_1 & \cdots & g_1 \\ g_2 & g_2 & \cdots & g_2 \\ \vdots & \vdots & \ddots & \vdots \\ g_n & g_n & \cdots & g_n \end{pmatrix},$$

where $f_v = \sum_{i=1}^m a_v^{(i)}a_i, g_v = \sum_{j=1}^k b_v^{(j)}b_j \in I$ for $1 \leq u, v \leq n$.

It follows from $fg = 0$ that

$$f_v[g_1 + g_2 + \cdots + g_n] = 0, \quad \text{for } 1 \leq u \leq n. \quad (3.1)$$

Because I is a general M-Armendariz ring, we have

$$a_v^{(i)}[b_1^{(j)} + b_2^{(j)} + \cdots + b_n^{(j)}] = 0 \quad \text{for } 1 \leq i, j \leq m \text{ and } 1 \leq u \leq n. \quad (3.2)$$

Hence we show that $A_iB_j = 0$ for all $1 \leq i, j \leq m$. □

Theorem 3.4 Let M be a monoid and $|M| \geq 2$. If I is a general M-Armendariz and reduced ring, and $|I| \geq 2$, then $D_n(I)$ is a maximal general M-Armendariz subring of $M_n(I)$ for $n \geq 2$.

Proof Suppose that T is a general M-Armendariz subring of $M_n(I)$ and T properly contains $D_n(I)$, then there exists $A = (a_{i,j}) \in T \setminus D_n(I)$ where $1 \leq i, j \leq n$. It suffices to show that T is not general M-Armendariz. Take $e \neq g \in M$, where e stands for the identity of M. We will proceed with the following two cases.

Case 1 Suppose that $a_{11} = a_{12} = \cdots = a_{1,j-1} \neq a_{1,j}$ where $2 \leq j \leq n$. Then $a_{1,j-1} - a_{1,j} \neq 0$.

Let

$$A_1 = A - \begin{pmatrix} a_{1,j} & a_{1,j} & \cdots & a_{1,j} \\ a_{2,j} & a_{2,j} & \cdots & a_{2,j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,j} & a_{n,j} & \cdots & a_{n,j} \end{pmatrix},$$

$$A_2 = A - \begin{pmatrix} a_{1,j-1} & a_{1,j-1} & \cdots & a_{1,j-1} \\ a_{2,j-1} & a_{2,j-1} & \cdots & a_{2,j-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,j-1} & a_{n,j-1} & \cdots & a_{n,j-1} \end{pmatrix},$$

Then $A_1, A_2 \in T$.

Let $f = A_1 e + A_2 g$ be in $T[M]$, and let

$$B_1 = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
a_{1,j-1} - a_{1,j} & a_{1,j-1} - a_{1,j} & \cdots & a_{1,j-1} - a_{1,j}
\end{pmatrix} (j),$$

$$B_2 = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
a_{1,j-1} - a_{1,j} & a_{1,j-1} - a_{1,j} & \cdots & a_{1,j-1} - a_{1,j}
\end{pmatrix} (j-1).$$

Then $B_1, B_2 \in T$.

Let $g = B_1 e + B_2 g$ be in $T[M]$. Then $fg = 0$, but

$$A_1 B_2 = \begin{pmatrix}
(a_{1,j-1} - a_{1,j})(a_{1,j-1} - a_{1,j}) & \cdots & (a_{1,j-1} - a_{1,j})(a_{1,j-1} - a_{1,j}) \\
(a_{2,j-1} - a_{2,j})(a_{1,j-1} - a_{1,j}) & \cdots & (a_{2,j-1} - a_{2,j})(a_{1,j-1} - a_{1,j}) \\
\vdots & \ddots & \vdots \\
(a_{n,j-1} - a_{n,j})(a_{1,j-1} - a_{1,j}) & \cdots & (a_{n,j-1} - a_{n,j})(a_{1,j-1} - a_{1,j})
\end{pmatrix} \neq 0.$$

This is a contradiction.

Case 2 Suppose that $a_{t,1} = a_{t,2} = \cdots = a_{t,n}$ where $1 \leq t \leq i - 1$, and $a_{i,1} = a_{i,2} = \cdots = a_{i,j-1} \neq a_{i,j}$ where $1 < i, j \leq n$. Then $a_{i,j-1} - a_{i,j} \neq 0$. Let

$$A_1 = A - \begin{pmatrix}
a_{11} & a_{11} & \cdots & a_{11} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i-1,i-1} & a_{i-1,i-1} & \cdots & a_{i-1,i-1} \\
a_{i,j} & a_{i,j} & \cdots & a_{i,j} \\
a_{i+1,j} & a_{i+1,j} & \cdots & a_{i+1,j} \\
\cdots & \cdots & \ddots & \cdots \\
a_{n,j} & a_{n,j} & \cdots & a_{n,j}
\end{pmatrix},$$

$$= \begin{pmatrix}
\cdots & 0 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \ddots & \cdots \\
\cdots & 0 & 0 & 0 & \cdots & 0 \\
\cdots & a_{i,j-1} - a_{i,j} & 0 & a_{i,j-1} - a_{i,j} & \cdots & a_{i,j-1} - a_{i,j} \\
\cdots & a_{i+1,j-1} - a_{i+1,j} & 0 & a_{i+1,j-1} - a_{i+1,j} & \cdots & a_{i+1,j-1} - a_{i+1,j} \\
\cdots & \cdots & \cdots & \cdots & \ddots & \cdots \\
\cdots & a_{n,j-1} - a_{n,j} & 0 & a_{n,j-1} - a_{n,j} & \cdots & a_{n,j-1} - a_{n,j}
\end{pmatrix},$$

where $1 \leq t \leq i - 1$, and $a_{i,1} = a_{i,2} = \cdots = a_{i,j-1} \neq a_{i,j}$.
Let $g = A_1 e + A_2 g$ be in $T[M]$, and let

$$B_1 = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
\end{pmatrix} \quad (j)$$

$$B_2 = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
\end{pmatrix} \quad (j - 1).$$

Then $B_1, B_2 \in T$.

Let $g = B_1 e + B_2 g$ be in $T[M]$. Then $fg = 0$, but

$$A_1 B_2 = \begin{pmatrix}
0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 \\
\end{pmatrix} \neq 0.$$
This is a contradiction.

Thus T is not general M-Armendariz. □

Let $D_n(I)^T = \left\{ \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} | a_i \in I \right\}$ for $n \geq 2$.

By using the same methods as in the proofs of Theorems 3.3 and 3.4, we have the following Theorem 3.5

Theorem 3.5 Let M be a monoid and $|M| \geq 2$. If I is a general M-Armendariz and reduced ring, and $|I| \geq 2$, then $D_n^T(I)$ is a maximal general M-Armendariz subring of $M_n(I)$ for $n \geq 2$.

References