On Generalized E-Monotonicity in Banach Spaces

Fan Long ZHANG, Li Ya FAN*

School of Mathematics Science, Liaocheng University, Shandong 252059, P. R. China

Abstract
Several new kinds of generalized E-preinvexity and generalized invariant E-monotonicity are introduced in the setting of Banach spaces. The relations between E-preinvexity, E-prequasiinvexity, (pseudo, quasi) E-invexity and invariant (pseudo, quasi) E-monotonicity are studied, which can be viewed as an extension of some known results.

Keywords E-preinvexity; E-invexity; invariant E-monotonicity; relations.

Document code A
MR(2000) Subject Classification 26A51; 26A48; 90C26
Chinese Library Classification O174.13

1. Introduction

Convexity is a common assumption made in mathematical programming. There have been increasing attempts to weaken the convexity of objective functions, see for example [1–9] and references therein. An interesting generalization for convexity is E-convexity, which was introduced and studied by Youness [1–3] and Yang [4]. They studied characterizations of efficient solutions and optimality criteria for a class of E-convex programming problems. Later, E-quasiconvexity was introduced in [5] and some basic properties for E-convex and E-quasiconvex functions were developed there. Very recently, Fulga and Preda [6] introduced E-invex sets and E-preinvex and E-prequasiinvex functions as an extension of the E-convex sets and E-convex and E-quasiconvex functions, respectively.

A concept related to the convexity is the monotonicity of mappings. In 1990, Karamardian and Schaible [7] studied the relations between the convexity of a real-valued function and the monotonicity of its gradient mapping. Yang et al. [8] investigated the relations between invexity and generalized invariant monotonicity in R^n. In this paper, we will introduce several new notions of generalized invexity and generalized invariant monotonicity, which are called E-quasinvexity, E-pseudoinvexity and invariant pseudo (quasi) E-monotonicity, and study their relations in Banach spaces. The results here can be viewed as an extension and improvement of corresponding results in [7, 8].

2. Invariant E-monotonicity

Received October 12, 2008; Accepted January 5, 2009
Supported by the National Natural Science Foundation of China (Grant No. 10871226).
* Corresponding author
E-mail address: zhangfanlong@qq.com (F. L. ZHANG); fanliya63@126.com (L. Y. FAN)
Throughout this paper, let \(X \) be a real Banach space and \(M \) a nonempty subset of \(X \). Let \(\eta : \times X \to X \) and \(E : X \to X \) be single-valued mappings and \(f : X \to R \) a function.

The set \(M \) is said to be in\(x \) with respect to \(\eta \) (see [9]) if for any \(x, y \in M \) and any \(\lambda \in [0,1] \), one has \(x + \lambda \eta(y,x) \in M \), and \(E \)-in\(x \) with respect to \(\eta \) (see [6]) if for any \(x, y \in M \) and any \(\lambda \in [0,1] \) one has \(E(x) + \lambda \eta(E(y), E(x)) \in M \). For the sake of brevity, \(E(x) \) will be written as \(Ex(x) \) for any \(x \in M \).

The function \(f \) is said to be Gâteaux differentiable at \(x_0 \in M \) if there exists a linear function \(f'(x_0) : X \to R \) such that

\[
\langle f'(x_0), v \rangle = \lim_{t \downarrow 0} \frac{f(x_0 + tv) - f(x_0)}{t}, \quad \forall v \in X,
\]

where \(f'(x_0) \) is called the Gâteaux derivative of \(f \) at \(x_0 \). The function \(f \) is said to be Gâteaux differentiable on \(M \) if it is Gâteaux differentiable at every \(x \) in \(M \).

Definition 2.1 Let \(M \) be an \(E \)-in\(x \) set with respect to \(\eta \) and \(f : X \to R \) be a Gâteaux differentiable function on \(M \). The function \(f \) is said to be

(i) ([6]) \(E \)-prein\(x \) in \(M \) with respect to \(\eta \) if

\[
f(Ey + \lambda \eta(Ex, Ey)) \leq \lambda f(Ex) + (1 - \lambda)f(Ey), \quad \forall x, y \in M, \forall \lambda \in [0,1];
\]

(ii) \(E \)-in\(x \) on \(M \) with respect to \(\eta \) if

\[
\langle f'(Ey), \eta(Ex, Ey) \rangle \leq f(Ex) - f(Ey), \quad \forall x, y \in M.
\]

Definition 2.2 Let \(M \) be an \(E \)-in\(x \) set with respect to \(\eta \) and \(f : X \to R \) be a Gâteaux differentiable function on \(M \). The operator \(f' \) is said to be invariant \(E \)-monotone on \(M \) with respect to \(\eta \) if

\[
\langle f'(Ey), \eta(Ex, Ey) \rangle + \langle f'(Ex), \eta(Ey, Ex) \rangle \leq 0, \quad \forall x, y \in M.
\]

When \(E = I \), the identity mapping, Definitions 2.1 and 2.2 reduce to the concepts of prein\(x \) vexity, in\(x \) vexity and invariant mon\(x \) tonicity in [8], respectively.

Motivated by the previous works on this issue, in this paper, we will study the closed relations between \(E \)-prein\(x \) vexity, \(E \)-in\(x \) vexity and invariant \(E \)-monotonicity. For this end, we first recall the following two assumptions, which are taken from [8, 9] and used in many papers. Let \(K \) be a nonempty subset of \(X \).

Assumption A Let the set \(K \) be in\(x \) with respect to \(\eta \) and \(f : K \to R \) be a function. Assume that \(f(y + \eta(x,y)) \leq f(x) \) for all \(x, y \in K \).

Assumption C Let \(\eta : X \times X \to X \) be a mapping. Assume that for any \(x, y \in K \) and any \(\lambda \in [0,1] \) one has

\[
\eta(y, y + \lambda \eta(x,y)) = -\lambda \eta(x,y) \quad \text{and} \quad \eta(x, y + \lambda \eta(x,y)) = (1 - \lambda) \eta(x,y).
\]

Yang et al. [8] showed that if \(\eta \) satisfies Assumption C, then

\[
\eta(y + \lambda_1 \eta(x,y), y + \lambda_2 \eta(x,y)) = (\lambda_1 - \lambda_2) \eta(x,y), \quad \forall x, y \in K, \lambda_1, \lambda_2 \in [0,1].
\]
The following example shows that the converse implication is not necessarily true, that is, the equality (1) is a proper generalization of Assumption C’.

Example 2.1 Let $K = [-2, 2]$ and

$$
\eta(x, y) = \begin{cases}
 x - y, & x y \geq 0, \\
 -\frac{y}{2}, & x > 0, y < 0, \\
 2 - y, & x < 0, y > 0.
\end{cases}
$$

We can verify that η satisfies the equality (1). But Assumption C’ does not hold for $x > 0, y < 0$ and $\lambda \in (0, 1]$.

Now, we introduce two similar assumptions, which are used in the sequel.

Assumption A Let $f : X \to R$ be a function and $\eta : X \times X \to X$ and $E : X \to X$ be single-valued mappings. Assume that $f(Ey + \eta(EX, Ey)) \leq f(EX), \forall x, y \in M$.

Assumption C Let $\eta : X \times X \to X$ and $E : X \to X$ be two single-valued mappings. Assume that for any $x, y \in M$ and any $\lambda_1, \lambda_2 \in [0, 1]$ one has

$$
\eta(Ey + \lambda_1 \eta(EX, Ey), Ey + \lambda_2 \eta(EX, Ey)) = (\lambda_1 - \lambda_2)\eta(EX, Ey).
$$

Theorem 2.1 Let M be an E-invex set with respect to η, $E(M)$ an invex set with respect to η and $f : X \to R$ Gâteaux differential on M. Then

(i) E-preinvexity of f implies E-invexity of f on M with respect to η;

(ii) E-invexity of f implies invariant E-monotonicity of f' on M with respect to η;

(iii) If Assumptions A and C are both satisfied, then invariant E-monotonicity of f' implies E-preinvexity of f on M with respect to η.

Proof

(a) Let f be E-preinvex on M. Then for any $x, y \in M$ and any $\lambda \in (0, 1]$ one has

$$
\frac{f(Ey + \lambda\eta(EX, Ey)) - f(Ey)}{\lambda} \leq f(EX) - f(Ey).
$$

Taking the limit for the above inequality as $\lambda \downarrow 0$, we get

$$
(f'(Ey), \eta(EX, Ey)) \leq f(EX) - f(Ey),
$$

which shows that f is E-invex on M.

(b) Let f be E-invex on M. Then the inequality (2) holds for any $x, y \in M$ and then

$$
(f'(Ey), \eta(EX, Ey)) + (f'(EX), \eta(EY, EX)) \leq 0,
$$

which indicates that f' is invariant E-monotone on M.

(c) Let f' be invariant E-monotone on M and Assumptions A and C hold. Assume to the contrary that f is not E-preinvex on M. Then there exist $x^0, y^0 \in M$ and $\lambda^0 \in (0, 1)$ such that

$$
f(EX^0) > \lambda^0 f(EX^0) + (1 - \lambda^0) f(Ey^0),
$$

where $EX^0 = Ey^0 + \lambda^0 \eta(EX^0, Ey^0)$. By Assumption A, we have $f(EX^0) > \lambda^0 f(Ey^0 + \eta(EX^0, Ey^0)) + (1 - \lambda^0) f(Ey^0)$, that is,

$$
\lambda^0 (f(EX^0) - f(Ey^0 + \eta(EX^0, Ey^0))) + (1 - \lambda^0) (f(EX^0) - f(Ey^0)) > 0.
$$
By the mean-value theorem, we get
\[(f'(Ez^1), \lambda^0(\lambda^0 - 1)\eta(Ez^0, Ey^0)) + (f'(Ez^2), (1 - \lambda^0)\lambda^0\eta(Ez^0, Ey^0)) > 0, \]
where \(Ez^1 = Ey^0 + \lambda^1\eta(Ez^0, Ey^0) \), \(Ez^2 = Ey^0 + \lambda^2\eta(Ez^0, Ey^0) \) and \(0 < \lambda^2 < \lambda^0 < \lambda^1 < 1 \). By Assumption C, it follows from (3) that
\[(f'(Ez^1), \eta(Ez^2, Ez^1)) + (f'(Ez^2), \eta(Ez^1, Ez^2)) > 0, \]
which contradicts the invariant \(E \)-monotonicity of \(f' \). Therefore, the assertion (iii) holds. \(\square \)

3. Generalized \(E \)-invexity and generalized \(E \)-monotonicity

In this section, we will introduce several new kinds of generalized \(E \)-invexity and generalized \(E \)-monotonicity, and establish the relationships between generalized \(E \)-invexity of the function \(f \) and generalized \(E \)-monotonicity of its Gâteaux differential \(f' \).

Definition 3.1 Let \(M \) be an \(E \)-invex set with respect to \(\eta \). A Gâteaux differential function \(f : X \rightarrow R \) is said to be

(i) \([6]\) \(E \)-prequasiinvex on \(M \) with respect to \(\eta \) if
\[f(Ey + \lambda\eta(Ex, Ey)) \leq \max\{f(Ex), f(Ey)\}, \quad \forall x, y \in M, \forall \lambda \in [0, 1]; \]

(ii) \(E \)-quasiinvex on \(M \) with respect to \(\eta \) if
\[f(Ex) \leq f(Ey) \Rightarrow (f'(Ey), \eta(Ex, Ey)) \leq 0, \quad \forall x, y \in M; \]

(iii) \(E \)-pseudoinvex on \(M \) with respect to \(\eta \) if
\[(f'(Ey), \eta(Ex, Ey)) \geq 0 \Rightarrow f(Ex) \geq f(Ey), \quad \forall x, y \in M. \]

Definition 3.2 Let \(M \) be an \(E \)-invex set with respect to \(\eta \) and \(f : X \rightarrow R \) a Gâteaux differential function. The operator \(f' \) is said to be

(i) invariant quasi \(E \)-monotone on \(M \) with respect to \(\eta \) if
\[(f'(Ey), \eta(Ex, Ey)) > 0 \Rightarrow (f'(Ex), \eta(Ey, Ex)) \leq 0, \quad \forall x, y \in M; \]

(ii) invariant pseudo \(E \)-monotone on \(M \) with respect to \(\eta \) if
\[(f'(Ey), \eta(Ex, Ey)) \geq 0 \Rightarrow (f'(Ex), \eta(Ey, Ex)) \leq 0, \quad \forall x, y \in M. \]

In the following, we study the relations between \(E \)-prequasiinvexity, (pseudo) quasi \(E \)-invexity and invariant (pseudo) quasi \(E \)-monotonicity.

Theorem 3.1 Let \(M \) be an \(E \)-invex set with respect to \(\eta \), \(E(M) \) an invex set with respect to \(\eta \) and \(f : X \rightarrow R \) a Gâteaux differential function. Then

(i) \(E \)-prequasiinvexity of \(f \) implies \(E \)-quasiinvexity of \(f \) on \(M \) with respect to \(\eta \);

(ii) \(E \)-quasiinvexity of \(f \) implies invariant quasi \(E \)-monotonicity of \(f' \) on \(M \) with respect to \(\eta \);

(iii) If Assumptions A and C are satisfied, then invariant quasi \(E \)-monotonicity of \(f' \) implies \(E \)-prequasiinvexity of \(f \) on \(M \) with respect to \(\eta \).
Proof (a) Let f be E-prequasiinvariant on M. For any $x, y \in M$ and any $\lambda \in (0, 1)$, assume without loss of generality that $f(Ey) \leq f(Ey)$. Then $f(Ey + \lambda \eta(Ey, Ey)) \leq f(Ey)$, that is, $\langle f(Ey + \lambda \eta(Ey, Ey)) - f(Ey), Ey \rangle \leq 0$. Taking the limit for the last inequality as $\lambda \downarrow 0$, we get $\langle f'(Ey), \eta(Ey, Ey) \rangle \leq 0$, which indicates that f is E-quasiinvariant on M.

(b) Let f be E-quasiinvariant on M. Assume to the contrary that f' is not invariant quasi E-monotone on M. Then there exist $x^0, y^0 \in M$ such that

$$\langle f'(Ey^0), \eta(Ey^0, Ey^0) \rangle > 0 \Rightarrow \langle f'(Ey^0), \eta(Ey^0, Ey^0) \rangle > 0.$$

By the definition of E-quasiinvariant, we get $f(Ey^0) > f(Ey^0)$ and $f(Ey^0) > f(Ey^0)$, which is a contradiction. Therefore, the assertion (ii) holds.

(c) Let f' be invariant quasi E-monotone on M and Assumptions A and C hold. Assume to the contrary that f is not E-quasiinvariant. Then there exist $x^0, y^0 \in M$ and $\lambda^0 \in (0, 1)$ such that

$$f(Ey^0 + \lambda^0 \eta(Ey^0, Ey^0)) > \max\{f(Ey^0), f(Ey^0)\}.$$

By the mean-value theorem and Assumption A, there exist $\lambda^1 \in (0, \lambda^0)$ and $\lambda^2 \in (\lambda^0, 1)$ such that

$$0 < f(Ez^0) - f(Ey^0) = \langle f'(Ez^1), \lambda^0 \eta(Ey^0, Ey^0) \rangle$$

and

$$0 < f(Ez^0) - f(Ey^0 + \eta(Ey^0, Ey^0)) = \langle f'(Ez^2), (\lambda^0 - 1) \eta(Ey^0, Ey^0) \rangle,$$

where $Ez^0 = Ey^0 + \lambda^0 \eta(Ey^0, Ey^0)$, $Ez^1 = Ey^0 + \lambda^1 \eta(Ey^0, Ey^0)$ and $Ez^2 = Ey^0 + \lambda^2 \eta(Ey^0, Ey^0)$. From Assumption C, it follows that $\langle f'(Ez^1), \eta(Ez^2, Ez^1) \rangle > 0$ and $\langle f'(Ez^2), \eta(Ez^1, Ez^2) \rangle > 0$ which is a contradiction to the invariant quasi E-monotonicity of f'. So the assertion (iii) holds. □

Theorem 3.2 Let M be an E-invex set with respect to η, $E(M)$ an invex set with respect to η and $f : X \to R$ a Gâteaux differential function. If Assumption A holds and f is E-pseudoinvariant on M with respect to η, then f is E-prequasiinvariant on M with respect to η.

Proof Assume to the contrary that f is not E-prequasiinvariant with respect to η. Then there exist $x^0, y^0 \in M$ and $\lambda^0 \in (0, 1)$ such that

$$f(Ey^0 + \lambda^0 \eta(Ey^0, Ey^0)) > \max\{f(Ey^0), f(Ey^0)\}.$$

Suppose without loss of generality that $f(Ey^0) \leq f(Ey^0)$. By Assumption A, we have

$$f(Ey^0 + \lambda^0 \eta(Ey^0, Ey^0)) \geq f(Ey^0) \leq f(Ey^0 + \eta(Ey^0, Ey^0)),$$

which indicates that there exists $\lambda^0 \in (0, 1)$ such that

$$f(Ey^0 + \lambda^0 \eta(Ey^0, Ey^0)) > f(Ey^0),$$

where $Ey^0 = Ey^0 + \lambda^0 \eta(Ey^0, Ey^0)$. Consequently, $f'(Ey^0) = 0$ and then $\langle f'(Ey^0), \eta(Ey^0, Ey^0) \rangle = 0$. It follows from the pseudoinvexity of f that $f(Ey^0) \geq f(Ey^0)$, which is a contradiction. Thus, the assertion of the theorem is true.

Theorem 3.3 Let M be an E-invex set with respect to η, $E(M)$ an invex set with respect
to \(\eta \) and \(f : X \to R \) a Gâteaux differential function. If Assumptions A and C hold, then \(f \) is E-pseudoinvex on \(M \) with respect to \(\eta \) if and only if \(f' \) is invariant pseudo E-monotone on \(M \) with respect to \(\eta \).

Proof Let \(f \) be E-pseudoinvex on \(M \) with respect to \(\eta \). Assume to the contrary that \(f' \) is not invariant pseudo E-monotone on \(M \) with respect to \(\eta \). Then there exist \(x^0, y^0 \in M \) such that

\[
\langle f'(Ey^0), \eta(Ex^0, Ey^0) \rangle \geq 0 \Rightarrow \langle f'(Ex^0), \eta(Ey^0, Ex^0) \rangle > 0.
\]

(4)

By the E-pseudoinvexity of \(f \), we have

\[
\langle f'(Ey^0), \eta(Ex^0, Ey^0) \rangle \geq 0 \Rightarrow f(Ex^0) \geq f(Ey^0).
\]

(5)

According to Theorems 3.2 and 3.1(i), it follows from (5) that \(\langle f'(Ex^0), \eta(Ey^0, Ex^0) \rangle \leq 0 \), which contradicts the implication (4).

Conversely, let \(f' \) be invariant pseudo E-monotone on \(M \) with respect to \(\eta \). For any \(x, y \in M \) with

\[
\langle f'(Ey), \eta(Ex, Ey) \rangle \geq 0,
\]

(6)

we want to show that \(f(Ex) \geq f(Ey) \). Assume to the contrary that \(f(Ex) < f(Ey) \). By the mean-value theorem, there exists \(\lambda^0 \in (0, 1) \) such that

\[
f(Ey + \lambda^0 \eta(Ex, Ey)) - f(Ey) = \langle f'(Ey + \lambda^0 \eta(Ex, Ey)), \eta(Ex, Ey) \rangle.
\]

By Assumptions A and C, it follows that

\[
\langle f'(Ey + \lambda^0 \eta(Ex, Ey)), \eta(Ey, Ey + \lambda^0 \eta(Ex, Ey)) \rangle > 0.
\]

By the invariant pseudo E-monotonicity of \(f' \), we can deduce that \(\langle f'(Ey), \eta(Ex, Ey) \rangle < 0 \), which contradicts the inequality (6). Hence, \(f \) is E-pseudoinvex on \(M \) with respect to \(\eta \). □

References

