Block-Transitive 2-(v, k, 1) Designs and Groups $E_6(q)$

Guang Guo HAN1,2

1. Institute of Mathematics, Hangzhou Dianzi University, Zhejiang 310018, P. R. China;
2. Institute of Information Engineering, Information Engineering University, Henan 450002, P. R. China

Abstract This article is a contribution to the study of block-transitive automorphism groups of 2-(v, k, 1) block designs. Let D be a 2-(v, k, 1) design admitting a block-transitive, point-primitive but not flag-transitive automorphism group G. Let $k_r = (k, v - 1)$ and $q = p^f$ for prime p. In this paper we prove that if G and D are as above and $q > (3(k, k - k_r + 1)f)^{1/3}$, then G does not admit a simple group $E_6(q)$ as its socle.

Keywords block design; block-transitive; point-primitive; automorphism group.

Document code A

MR(2000) Subject Classification 05B05; 20B25

Chinese Library Classification O157.2

1. Introduction

A 2-(v, k, 1) design $D = (\mathcal{P}, \mathcal{B})$ is a pair consisting of a finite set \mathcal{P} of v points and a collection \mathcal{B} of k-subsets of \mathcal{P}, called blocks, such that each 2-subset of \mathcal{P} is contained in exactly one block. We will always assume that $2 < k < v$.

Recall that an automorphism of a 2-(v, k, 1) design D is a permutation of the set \mathcal{P} of points which maps blocks to blocks. The set of all automorphisms is called the automorphism group Aut(D) of D, a subgroup of Sym(\mathcal{P}). Let $G \leq$ Aut(D). Then G is said to be block transitive on D if G is transitive on \mathcal{B}, and is said to be point transitive (point primitive) on D if G is transitive (primitive) on \mathcal{P}. A flag of D is a pair consisting of a point and a block through that point. Then G is flag transitive on D if G is transitive on the set of flags.

In 1990, a six-person team [4] classified the pairs (G, D) where G is a flag-transitive automorphism group of D, with the exception of those in which G is a one-dimensional affine group. In this paper we contribute to the classification of designs which have an automorphism group transitive on blocks. It follows from a result of Block [2] that a block-transitive automorphism group of a 2-(v, k, 1) design is transitive on points. In [7] it was shown that the study of block-transitive 2-(v, k, 1) designs can be reduced to three cases, distinguishable by properties of the action of G on the point set \mathcal{P}: that in which G is of affine type in the sense that it has an

Received November 11, 2008; Accepted May 15, 2009

Supported by the National Natural Science Foundation of China (Grant No.10871205), China Postdoctoral Science Foundation Funded Project (Grant No. 20080441323) and Scientific Research Fund of Zhejiang Education Department (Grant No. Y200804780).

E-mail address: hangg@hdu.edu.cn
elementary abelian transitive normal subgroup; that in which G is almost simple, in the sense that G has a simple nonabelian transitive normal subgroup T whose centralizer is trivial, so that $T \leq G \leq \text{Aut}T$; and that in which G has an intransitive minimal normal subgroup. Much work is needed to achieve this classification [5, 7, 9]. Liu et al have studied the special case where $G = T := \text{Soc}(G)$ is any finite group of Lie type of Lie rank 1 acting block-transitively on a design in [15–18]. Here we focus on the second case, that is, classifying $2-(v, k, 1)$ designs with a block-transitive automorphism group of almost simple type under the conditions that G is point-primitive but not flag-transitive.

Our paper is organized as follows: In Section 2 we collect some preliminary results and in Section 3 we use them to prove Theorem 1.1.

2. Preliminary results

Let \mathcal{D} be a 2-$(v, k, 1)$ design defined on the point set \mathcal{P}, and suppose that G is an automorphism group of \mathcal{D} that acts transitively on blocks. For a 2-$(v, k, 1)$ design, as usual, b denotes the number of blocks and r denotes the number of blocks through a given point. If B is a block, G_B denotes the setwise stabilizer of B in G and $G(B)$ is the pointwise stabilizer of B in G. Also, G_B^* denotes the permutation group induced by the action of G_B on the points of B, and so $G_B^* \cong G_B/G(B)$.

For the basic notions and results of design theory and finite permutation groups, the reader is referred to [1, 19]. We will follow the notations of [10] for simple groups $T = E_6(q)$. Let W be the Weyl group associated with the simple group T, N the monomial subgroup of T, and H the diagonal subgroup of T. From [10, Theorem 7.2.2], it is well known that there exists a homomorphism $\phi : N \to W$ such that $N/H \cong W$. Let Φ be the root system corresponding to T with fundamental system Π, also let Φ^+ (Φ^-) be the set of positive (negative) roots in Φ. If J is a subset of the set Π of fundamental roots and V_J is the subspace of V spanned by J, then Φ_J denotes the set of roots of Φ lying in the subspace V_J. We use the standard labelling for Dynkin diagram with fundamental roots α_i as in [3, pp.250-275].

The main result regarding the maximal subgroups of $E_6(q)$ to be used is the following

Lemma 2.1 (Liebeck and Saxl [14]) Suppose that $T := \text{Soc}(G) \cong E_6(q)$ is a simple exceptional group of Lie type over $GF(q)$, where $q = p^f$ for a prime p and positive integer f. Let M be a
maximal subgroup of G not containing T. Then one of the following holds:

(a) $|M| < q^3 |G : T|$;

(b) $T \cap M$ is a parabolic subgroup of T;

(c) $T \cap M$ is isomorphic to one of (i) $F_4(q)$; (ii) $E_6(q^2)$ with q square; (iii) $E_7(q^2)$ with q square; (iv) $(D_5(q) \circ (q-1)/e+1).f_+1$ where $e+1 = (q-1,3)$ and $f_+1 = (q-1,4)$; or (v) $(SL_2(q) \circ A_5(q)).d_1$ where $d_1 = (2,q-1)$.

3. Proof of Theorem 1.1

We assume throughout this section that $q = p^f$ for p a prime integer and f a positive integer. If n is a positive integer, then $|n|_p$ denotes the p-part of n and $|n|_{p'}$ denotes the p'-part of n. In other words, $|n|_p = p^f$ where $p^f \mid n$ but $p^{f+1} \nmid n$, and $|n|_{p'} = n/|n|_p$.

Following Fang and Li [11], we shall use the following parameters of $2-(v,k,1)$ designs:

$$k_v = (k,v), \quad k_r = (k,r) = (k,v-1), \quad b_v = (b,v), \quad b_r = (b,r) = (b,v-1).$$

It is easy to check that $k = k_v k_r$, $b = b_v b_r$, $v = k_v b_v$ and $r = k_r b_r$.

Proposition 3.1 Let D and G satisfy the conditions of Theorem 1.1, $T = Soc(G)$ and $T_\alpha = T \cap G_\alpha$, where $\alpha \in \mathcal{P}$. Then we have the following properties:

(P1) $v = 1 + k_v (k-1)b_r$;

(P2) $\frac{v}{x} < (k_v k_r + 1)|G : T|$ or $\frac{v-1}{x} \leq (k_v k_r + 1)|G : T|$, where x is the size of a T_α-orbit in $\mathcal{P} \setminus \{\alpha\}$;

(P3) $\frac{|T|}{|T_\alpha|} < \left\lfloor \frac{k_v k_r + 1}{2} \right\rfloor$, where $\left\lfloor \frac{k_v k_r + 1}{2} \right\rfloor$ is the ceiling of $\frac{k_v k_r + 1}{2}$;

(P4) If $(v-1,q) = 1$, then there exists a T_α-orbit with size y in $\mathcal{P} \setminus \{\alpha\}$ such that $y || T_\alpha $$p'$;

(P5) $b_r || G_\alpha$.

Proof (P1) Since $kb = lr$ and $r = \frac{v-1}{b_v}$, we have $k(k-1)b = v(v-1)$, which is the same as $k_r(k-1)b_r = v - 1$. Hence $v = 1 + k_r(k-1)b_r$.

(P2) Let Δ be any T_α-orbit in $\mathcal{P} \setminus \{\alpha\}$ with size x, and Γ a nontrivial suborbit of G_α such that $\Delta \subseteq \Gamma$. Since $\frac{|G|}{|G_\alpha|} = \frac{|T|}{|T_\alpha|}$, we have

$$|G : T| = |G_\alpha : T_\alpha|,$$

and

$$|\Gamma| = \frac{|G_\alpha|}{|G_{\alpha\beta}|} \leq \frac{|G_\alpha|}{|T_{\alpha\beta}|} = \frac{|T_\alpha|}{|T_{\alpha\beta}|} = x|G : T|,$$

where $\beta \in \Delta$. Since $v = 1 + k_r(k-1)b_r$, we have $\frac{v}{b_v} < 1 + k_r(k-1)$.

By Lemma 2.1 of [13], we have $b_r || |\Gamma|$, and $b_r \leq |\Gamma|$. Thus

$$\frac{v}{x|G : T|} \leq \frac{v}{|\Gamma|} \leq \frac{v}{b_r} < 1 + k_r(k-1),$$

and we have the first inequality. The proof of the other inequality is similar.

(P3) Let B be a block of D. Then the following possibility of the type of G^B, the rank and
the subdegree of G does not occur.

<table>
<thead>
<tr>
<th>Type of G^B</th>
<th>Rank</th>
<th>Subdegree</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle 1 \rangle$</td>
<td>$1 + k_r(k-1)$</td>
<td>$1, b_r, \ldots, b_r$</td>
</tr>
</tbody>
</table>

In fact, since the order of G^B is odd, the order of G is odd. This contradicts the fact that $\text{Soc}(G)$ is $E_6(q)$. So the longest size of the suborbit of G is not less than $2b_r$. Denote by θ and λ the longest suborbits of T and G, respectively. Then

$$\lambda \leq |G : T| \leq |G : T||T_{\alpha}|.$$

We have

$$v = \frac{|T|}{|T_{\alpha}|} \leq \left[\frac{v}{\lambda} \right] \leq \left[\frac{v}{\lambda} \right] |G : T||T_{\alpha}|,$$

and

$$|T| \leq \left[\frac{v}{\lambda} \right] |G : T||T_{\alpha}|^2.$$

Also since $\lambda \geq 2b_r$, we have

$$\frac{|T|}{|T_{\alpha}|^2} < \left[\frac{k_rk - k_r + 1}{2} \right] |G : T|.$$

(P4) Let t be the size of any T_{α}-orbit in $\mathcal{P} \setminus \{\alpha\}$. Suppose to the contrary that $t \not| |T_{\alpha}|$. Since $t | |T_{\alpha}|$, we have pt. Furthermore, since $\mathcal{P} \setminus \{\alpha\}$ is a union of T_{α}-orbits, $p|v - 1$. Thus $p|(v - 1, q)$, which contradicts $(v - 1, q) = 1$.

(P5) This is a straightforward consequence of [13, Lemma 2.1].

Proof of Theorem 1.1 Let D and G satisfy the hypotheses of Theorem 1.1. Suppose on the contrary that $T := \text{Soc}(G) \cong E_6(q)$, where $q = p^f > (3(k_rk - k_r + 1)f)^{1/3}$ and p is prime.

Since G is primitive on \mathcal{P}, G_{α} is a maximal subgroup of G for any $\alpha \in \mathcal{P}$. Hence $M = G_{\alpha}$ satisfies one of the three cases in Lemma 2.1. We will rule out these cases one by one.

Lemma 3.1 Case (a) in Lemma 2.1 does not occur.

Proof By (P3),

$$|T| < \left[\frac{k_rk - k_r + 1}{2} \right]|T_{\alpha}|^2|G : T| < \left[\frac{k_rk - k_r + 1}{2} \right]q^{74}|G : T|.$$

Since $|E_6(q)| = q^{36}(q^{12} - 1)(q^9 - 1)(q^6 - 1)(q^5 - 1)(q^3 - 1)/d$, where $d = (3, q - 1)$, we have

$$\frac{|T|}{q^{74}} = \frac{(q^{12} - 1)(q^9 - 1)(q^6 - 1)(q^5 - 1)(q^3 - 1)}{dq^{38}} > \frac{q^{42} - q^{40} - q^{37} - (2^5 - 2)q^{36}}{dq^{38}} > \frac{q^{36} - q^4 - q^{30}}{dq^{2}} > \frac{k_rk - k_r + 1}{2}|G : T|,$$

contradicting (1).

Lemma 3.2 Case (b) in Lemma 2.1 does not occur.
Proof Let \(\Pi = \{\alpha_1, \alpha_2, \ldots, \alpha_6\} \) be the fundamental root system of \(E_6(q) \), let \(J_i = \Pi - \{\alpha_i\} \), and \(P_{J_i} \) be the parabolic subgroup of \(E_6(q) \) determined by \(J_i \).

The following Table 1 lists the order of \(T_\alpha \) and the value of \(v = |T|/|T_\alpha| \) in the corresponding subcases.

| \(T_\alpha \) | \(|T_\alpha| \) | \(v \) |
|----------------|----------------|--------|
| \(P_{J_1} \) | \(q^36(q - 1)(q^2 - 1)(q^4 - 1)(q^5 - 1)(q^6 - 1)/(q^8 - 1)/d \) | \((q^{a_0-1})(q^{a_2-1})/(q-1)(q^d-1) \) |
| \(P_{J_2} \) | \(q^36\prod_{i=1}^6(q^i - 1)/d \) | \((q^8-1)(q^9-1)/(q-1)(q^d-1) \) |
| \(P_{J_3} \) | \(q^36(q - 1)(q^2 - 1)(q^3 - 1)(q^4 - 1)(q^5 - 1)/d \) | \((q-1)(q^4-1)(q^5-1)/(q^d-1) \) |
| \(P_{J_4} \) | \(q^36(q - 1)(q^2 - 1)(q^3 - 1)^2/(q^d-1) \) | \((q-1)(q^4-1)(q^5-1)/(q^d-1) \) |
| \(P_{J_5} \) | \(q^36(q - 1)(q^2 - 1)(q^3 - 1)(q^4 - 1)(q^5 - 1)/d \) | \((q-1)(q^4-1)(q^5-1)/(q^d-1) \) |
| \(P_{J_6} \) | \(q^36(q - 1)(q^2 - 1)(q^3 - 1)(q^4 - 1)(q^5 - 1)(q^6 - 1)/(q^8 - 1)/d \) | \((q^{a_0-1})(q^{a_2-1})/(q-1)(q^d-1) \) |

Table 1 Subcases of Case (b)

Subcase 3.1 \(T_\alpha = P_{J_1} \). By [10, Theorem 7.2.2], there exists a homomorphism \(\phi : N \to W \) such that \(N/H \cong W \). Let \(\phi(n_1) = w_{\alpha_1} \), where \(n_1 \in N \), \(w_{\alpha_1} \) is the corresponding reflection of \(\alpha_1 \) in the Weyl group \(W \). Now we consider \(P_{J_1} \cap P_{J_2}^{a_1} \). Since \(P_{J_1} = \langle X_r, H|r \in \Phi^+ \cup \Phi_{J_1} \rangle \), we have

\[
P_{J_1}^{a_1} = \langle X_r, H|r \in (\Phi^+)^{a_1} \cup (\Phi_{J_1})^{n_1} \rangle
= \langle X_r, H|r \in (\Phi^+-\{\alpha_1\}) \cup \{-\alpha_1\} \cup \Phi_{w_{\alpha_1}(J_1)} \rangle.
\]

It follows that

\[
\langle X_r, H|r \in (\Phi^+-\{\alpha_1\}) \cup \Phi_{J'} \rangle \leq P_{J_1} \cap P_{J_2}^{a_1},
\]

where \(J' = \{\alpha_2, \alpha_4, \alpha_5, \alpha_6\} \). Let

\[
P = \langle X_r, H|r \in (\Phi^+-\{\alpha_1\}) \cup \Phi_{J'} \rangle \quad \text{and} \quad \tilde{U} = \prod_{r \in (\Phi^+-\{\alpha_1\}) \cap \Phi_{J'}} X_r \leq U_{J'}.
\]

Then we have

\[
\tilde{P} = \tilde{U} L_{J'}, \quad |\tilde{P}| = \frac{1}{d} q^{35}(q - 1)^2(q^2 - 1)(q^3 - 1)(q^4 - 1)(q^5 - 1).
\]

Thus \(T_\alpha \) has an orbit of size

\[
x = \frac{|P_{J_1}|}{|P_{J_1} \cap P_{J_2}^{a_1}|} \leq \frac{|P_{J_1}|}{|P_{J_2}^{a_1}|} = \frac{q(q^6 - 1)(q^8 - 1)}{(q-1)(q^d-1)}.
\]

Therefore,

\[
\frac{v}{x} > q^4 > (k_r k - k_r + 1)|G:T|,
\]

where \(v \) is given in the first line of Table 1. This contradicts property \((P_2)\).

Subcase 3.2 \(T_\alpha = P_{J_1} \). Let \(n_2 \) be the inverse image of \(w_{\alpha_2} \) under \(\phi \). Since

\[
P_{J_2} = \langle X_r, H|r \in \Phi^+ \cup \Phi_{J_2} \rangle,
\]
\[P_{J_2}^{n_2} = (X_r, H| r \in (\Phi^+)^{n_2} \cup (\Phi_{J_2})^{n_2}) \]
\[= (X_r, H| r \in (\Phi^+ - \{\alpha_2\}) \cup \{-\alpha_2\} \cup \Phi_{w_{\alpha_2}(J_2)}). \]

Then
\[P_{J_2} \cap P_{J_2}^{n_2} \geq (X_r, H| r \in (\Phi^+ - \{\alpha_2\}) \cup \Phi_{J'}). \]
where \(J' = \{\alpha_1, \alpha_3, \alpha_5, \alpha_6\}. \) Hence
\[|P_{J_2} \cap P_{J_2}^{n_2}| > \frac{1}{d} q^{35}(q - 1)^2(q^2 - 1)^2(q^3 - 1)^2, \]
and \(T_{\alpha} \) has an orbit of size
\[x = \frac{|P_{J_2}|}{|P_{J_2} \cap P_{J_2}^{n_2}|} \leq \frac{q(q^4 - 1)(q^5 - 1)(q^6 - 1)}{(q - 1)(q^2 - 1)(q^3 - 1)}. \]
It follows that
\[\frac{v}{x} > q^{15} > (k_r k - k_r + 1)|G : T|, \]
contradicting \((P_2)\).

Subcase 3.3 \(T_{\alpha} = P_{J_3} \). Let \(n_3 \) be the inverse image of \(w_{\alpha_3} \) under \(\phi \). Since
\[P_{J_3} = (X_r, H| r \in \Phi^+ \cup \Phi_{J_3}), \]
\[P_{J_3}^{n_3} = (X_r, H| r \in (\Phi^+)^{n_3} \cup (\Phi_{J_3})^{n_3}) \]
\[= (X_r, H| r \in (\Phi^+ - \{\alpha_3\}) \cup \{-\alpha_3\} \cup \Phi_{w_{\alpha_3}(J_3)}), \]
then
\[P_{J_3} \cap P_{J_3}^{n_3} \geq (X_r, H| r \in (\Phi^+ - \{\alpha_3\}) \cup \Phi_{J'}) \]
where \(J' = \{\alpha_2, \alpha_5, \alpha_6\} \), and
\[|P_{J_3} \cap P_{J_3}^{n_3}| > \frac{1}{d} q^{35}(q - 1)^3(q^2 - 1)^2(q^3 - 1). \]
Thus \(T_{\alpha} \) has an orbit of size
\[x = \frac{|P_{J_3}|}{|P_{J_3} \cap P_{J_3}^{n_3}|} \leq \frac{q(q^4 - 1)(q^5 - 1)}{(q - 1)^2}. \]
It follows that
\[\frac{v}{x} > q^{15} > (k_r k - k_r + 1)|G : T|, \]
contradicting \((P_2)\).

Subcase 3.4 \(T_{\alpha} = P_{J_4} \). Let \(n_4 \) be the inverse image of \(w_{\alpha_4} \) under \(\phi \). Since
\[P_{J_4} = (X_r, H| r \in \Phi^+ \cup \Phi_{J_4}), \]
\[P_{J_4}^{n_4} = (X_r, H| r \in (\Phi^+ - \{\alpha_4\}) \cup \{-\alpha_4\} \cup \Phi_{w_{\alpha_4}(J_4)}), \]
then
\[P_{J_4} \cap P_{J_4}^{n_4} \geq (X_r, H| r \in (\Phi^+ - \{\alpha_4\}) \cup \Phi_{J'}) \]
where \(J' = \{\alpha_1, \alpha_6\} \), and
\[|P_{J_4} \cap P_{J_4}^{n_4}| > \frac{1}{d} q^{35}(q - 1)^4(q^2 - 1)^2. \]
So \(T_{\alpha} \) has an orbit of size
\[x = \frac{|P_{J_4}|}{|P_{J_4} \cap P_{J_4}^{n_4}|} \leq \frac{q(q^2 - 1)(q^3 - 1)^2}{(q - 1)^3}. \]
It follows that
\[\frac{v}{x} > q^{20} > (k_r k - k_r + 1)|G : T|, \]
contradicting (P2).

Subcase 3.5 $T_\alpha = P_{J_5}$. There exists an element $g \in \text{Aut}(T)$ such that $P_{J_5} = P_{J_5}^g$, a contradiction.

Subcase 3.6 $T_\alpha = P_{J_6}$. There exists an element $g_1 \in \text{Aut}(T)$ such that $P_{J_6} = P_{J_6}^{g_1}$, a contradiction. \hfill \Box

Lemma 3.3 Case (c) in Lemma 2.1 does not occur.

Proof Table 2 lists the order of T_α and the value of $v = |T|/|T_\alpha|$ in the corresponding subcases, where $d_4 = (4, q - 1)$, $d_5 = (6, q - 1)$.

| T_α | $|T_\alpha|$ | v |
|---|---|---|
| (i) | $q^{12}(q^2 - 1)(q^6 - 1)(q^4 - 1)(q^{12} - 1)$ | $q^{12}(q^5 - 1)(q^3 - 1)/d$ |
| (ii) | $q^{18}(q - 1)(q^2 - 1)(q^4 - 1)(q^6 - 1)/d_2$ | $d_2q^{18}(q + 1)(q^2 + 1)(q^3 + 1)$ |
| (iii) | $q^{18}(q - 1)(q^2 + 1)(q^4 - 1)(q^6 - 1)/d_3$ | $d_3q^{18}(q + 1)(q^2 - 1)(q^3 + 1)$ |
| (iv) | $\frac{3q^{18}(q - 1)(q^2 - 1)(q^4 - 1)(q^6 - 1)}{d_4 + 1}$ | $\frac{d_4q^{18}(q + 1)(q^2 - 1)(q^3 + 1)}{d_4 + 1}$ |
| (v) | $q^{18}(q^2 - 1)^2(q^3 - 1)(q^4 - 1)(q^5 - 1)(q^6 - 1)/d_5$ | $\frac{d_5q^{20}(q^2 - 1)(q^3 - 1)(q^5 - 1)(q^6 - 1)}{d_5 + 1}$ |

Table 2 Subcases of Case (c)

Subcase (i) $T_\alpha = F_4(q)$.

By (P1), we have $(v, b_r) = 1$. Combining with (P5), then we have $b_r ||G_\alpha|_{v'}$, where $|G_\alpha|_{v'}$ denotes the v'-part of $|G_\alpha|$. Hence $b_r ||T_\alpha|_{v'} : |G : T|$. We have

$$|T_\alpha|_{v'} = (q^3 + 1)(q^5 + q^6 + \cdots + q + 1)(q^9 + q^6 + q^3 + 1)$$

and

$$v = 1 + k_r(k - 1)b_r \leq 1 + k_r(k - 1)|T_\alpha|_{v'} : |G : T|.$$

Then

$$\frac{1}{d}q^{25} < v < 1 + 2k_r(k - 1)q^{20}|G : T|. \quad (2)$$

When $q > (3(k_r k - k_r + 1)f)^{1/3}$, equation (2) leads to a contradiction.

Subcase (ii) $T_\alpha = E_6(q^2)$ where q is square.

By (P4), T_α has an orbit of size y such that

$$y \leq |T_\alpha|_{v'} = (q - 1)(q^5 - 1)(q^3 - 1)(q^4 - 1)(q^9 - 1)(q^{12} - 1)/d_2,$$
where \(d_2 = (3, q^{1/2} - 1) \). It follows that
\[
\frac{v}{y} > q^{14} > (k_r k - k_r + 1)|G : T|,
\]
contradicting (P2).

\textbf{Subcase (iii)} \(T_\alpha = 2E_6(q^{1/2}) \) where \(q \) is square.

By (P4), \(T_\alpha \) has an orbit of size \(y \) such that
\[
y \leq |T_\alpha|_{p'} = (q - 1)(q^{\frac{3}{2}} + 1)(q - 1)(q^{\frac{7}{2}} + 1)(q^{\frac{3}{2}} - 1)/(d_3),
\]
where \(d_3 = (3, q^{1/2} + 1) \). It follows that
\[
\frac{v}{y} > q^{13} > (k_r k - k_r + 1)|G : T|,
\]
contradicting (P2).

\textbf{Subcase (iv)} The proof is similar to subcase (ii).

\textbf{Subcase (v)} The proof is similar to subcase (ii).

By Lemmas 3.1–3.3, this completes the proof of Theorem 1.1.

\textbf{References}