Incompleteness of Complex Exponential System in L^p_{α} Space

Xie Quan FAN, Guan Tie DENG*

Key Laboratory of Mathematics and Complex Systems, Ministry of Education, China,
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China

Abstract A necessary and sufficient condition is obtained for the incompleteness of complex exponential system in the weighted Banach space $L^p_{\alpha} = \{f : \int_{-\infty}^{\infty} |f(t)e^{-\alpha(t)}|^p dt < +\infty\}$, where $1 \leq p < +\infty$ and $\alpha(t)$ is a weight on \mathbb{R}.

Keywords incompleteness; exponential system; approximation.

Document code A
MR(2000) Subject Classification 31A10; 31A15
Chinese Library Classification O174.5; O174.52

1. Introduction

A system $E = \{e_k : k = 1, 2, \ldots\}$ of elements of a Banach space B is called incomplete if $\text{span} E$ does not coincide with the whole B, where $\text{span} E$ is the linear span of the system E and the $\overline{\text{span}} E$ is the closure of $\text{span} E$ in B.

Suppose $\alpha(t)$ is a nonnegative continuous function, called a weight, on \mathbb{R}, and satisfies
\[
\lim_{t \to +\infty} t^{-1}\alpha(t) = +\infty, \quad a_0 = \limsup_{t \to -\infty} |t|^{-1}\alpha(t) < +\infty. \quad (1)
\]
Given a weight $\alpha(t)$, we take the weighted Banach space C_α consisting of complex continuous functions $f(t)$ defined on \mathbb{R} with $f(t)\exp(-\alpha(t))$ vanishing at infinity and the norm $\|f\|_\alpha = \sup\{|f(t)e^{-\alpha(t)}| : t \in \mathbb{R}\}$. Suppose $L^p_{\alpha} = \{f : \|f\| = (\int_{-\infty}^{\infty} |f(t)e^{-\alpha(t)}|^p dt)^{1/p} < +\infty\}$, $1 \leq p < +\infty$. Then L^p_{α} is also a Banach space. Let $\Lambda = \{\lambda_n : n = 1, 2, \ldots\}$ be a sequence of distinct complex numbers in the half plane $C_{a_0} = \{z = x + iy : x > a_0\}$ satisfying
\[
a_1 = \sup_{n} |\theta_n| < \frac{\pi}{2}. \quad (2)
\]
Let $M = \{m_n : n = 1, 2, \ldots\}$ be a sequence of positive integers and suppose that there exists an increasing positive function $q(r)$ on $[0, \infty)$ satisfying
\[
a_2 = \limsup_{r \to +\infty} q(r)r^{-1}\log r < +\infty; \quad (3)
\]
Received October 22, 2008; Accepted September 15, 2009
Supported by the National Natural Science Foundation of China (Grant No. 10671022) and the Research Fund for the Doctoral of Higher Education (Grant No. 20060027023).
* Corresponding author
E-mail address: fanxiequan@hotmail.com (X. Q. FAN); denggt@bnu.edu.cn (G. T. DENG)
\[D(q) = \limsup_{r \to +\infty} \frac{n(r + q(r)) - n(r)}{q(r)}. \] (4)

where \(n(t) = \sum_{|\lambda_n| \leq t} m_n \). We denote the system of complex exponentials by
\[E(\Lambda, M) = \{ t^{k-1} e^{\lambda_n t} : k = 1, 2, \ldots, m_n; n = 1, 2, \ldots \}. \]

The condition (1) guarantees that \(E(\Lambda, M) \) is a subset of \(C_0 \) and \(L_p^0 \). In the article [1], the author has obtained some results on incompleteness of \(E(\Lambda, M) \) in \(C_0 \). Now we ask whether \(E(\Lambda, E) \) is incomplete in \(L_p^0 \) in the norm \(\| \| \). The similar results were obtained in the articles [2], [3] and [4].

Theorem A ([(1)]) Let \(\alpha(t) \) be continuous on \(\mathbb{R} \) and convex on \([t_0, \infty) \) for some constant \(t_0 \), and satisfy (1). Suppose that \(\Lambda = \{ \lambda_n = |\lambda_n| e^{i\theta_n} : n = 1, 2, \ldots \} \) is a sequence of distinct complex numbers in \(C_{a_0} \) satisfying (2) and \(M = \{ m_n : n = 1, 2, \ldots \} \) is a sequence of positive integers.

If there exists a positive and increasing function \(q(r) \) on \([0, \infty) \) such that (3) and (4) hold, then \(E(\Lambda, M) \) is incomplete in \(C_0 \) if and only if there exists \(a \in \mathbb{R} \) such that
\[J(a) = \int_0^{+\infty} \frac{\alpha(\lambda(t) + a)}{1 + t^2} \, dt < +\infty, \] (5)

where
\[\lambda(r) = \begin{cases} 2 \sum_{|\lambda| \leq r} \frac{m_n \cos \theta_n}{|\lambda_n|} \, dt, & \text{if } r \geq |\lambda_1|, \\ 0, & \text{otherwise}. \end{cases} \]

Theorem 1 Assume \(\alpha(t) \), \(\Lambda \) and \(M \) satisfy the same conditions as Theorem A. If there exists a positive and increasing function \(q(r) \) on \([0, \infty) \) such that (3) and (4) hold, then \(E(\Lambda, M) \) is incomplete in \(L_p^0 \) if and only if there exists \(a \in \mathbb{R} \) such that (5) holds.

2. Lemmas and Proof of Theorem 1

In order to prove Theorem 1, we need the following technical lemmas.

Lemma 1 ([5]) Let \(\beta(x) \) be a convex function on \([0, \infty)\) and assume that
\[\beta^*(t) = \sup\{ xt - \beta(x) : x \geq 0 \}, \quad t \in \mathbb{R} \] (7)

is the Legendre transform (or the Young dual function) ([6]) of \(\beta(x) \). Suppose that \(\lambda(r) \) is an increasing function on \([0, \infty)\) satisfying
\[\lambda(R) - \lambda(r) \leq A(\log R - \log r + 1), \quad R > r > 1. \] (8)

Then there exists an analytic function \(f(z) \neq 0 \) in \(C_0 = \{ z = x + iy : x > 0 \} \) satisfying
\[|f(z)| \leq A \exp\{Ax + \beta(x) - x\lambda(|z|)\}, \quad z = x + iy \in C_0, \] (9)

if and only if there exists \(a \in \mathbb{R} \) such that
\[\int_1^{+\infty} \frac{\beta^*(\lambda(t) + a)}{1 + t^2} \, dt < +\infty. \] (10)
Remark We denote a positive constant by A, not necessarily the same at each occurrence.

Lemma 2 ([1]) Suppose that $\Lambda = \{\lambda_n = |\lambda_n| e^{i\theta_n} : n = 1, 2, \ldots\}$ is a sequence of distinct complex numbers satisfying (2) and $M = \{m_n : n = 1, 2, \ldots\}$ is a sequence of positive integers. If there exists a positive and increasing function $q(r)$ on $[0, \infty)$ such that (3) and (4) hold, then for each $b > 0$, the function

$$G_b(z) = Q_b(z) \prod_{\Re \lambda_n > b} \left(1 - \frac{z}{\lambda_n}\right) m_n \exp \left(\frac{2\pi m_n \cos \theta_n}{|\lambda_n|}\right)$$

(11)

is meromorphic and analytic in the half-plane $\mathcal{C}_{-b} = \{z = x + iy : x > -b\}$ with zeros of orders m_n at each points λ_n ($n = 1, 2, \ldots$) and satisfies the following inequality

$$|G_b(z)| \leq \exp\{|x|\lambda(2r) + A|x| + A\}, \quad z \in \mathcal{C}_{-b},$$

(12)

where

$$Q_b(z) = \prod_{\Re \lambda_n \leq b} \left(\frac{z - \lambda_n}{z + b + 1}\right)^{m_n}.$$

Moreover, for each positive constant A_0 and $\varepsilon_0 > 0$,

$$|G_b(z)| \geq \exp\{x\lambda(r) - A|x| - A\}, \quad z \in C(A_0, \varepsilon_0),$$

(13)

where $C(A_0, \varepsilon_0) = \{z \in \mathcal{C}_{-b} : |z - \lambda_n| \geq \delta_n, n = 1, 2, \ldots\}$, $\delta_n = \varepsilon_0|\lambda_n|^{-A_0}$, $n = 1, 2, \ldots$.

Proof If the system $E(\Lambda, M)$ is incomplete in L^p_{α}, then by Hahn-Banach Theorem, there exists a bounded linear function T on L^p_{α} such that

$$\|T\| = 1 \quad \text{and} \quad T(t^{k-1}e^{\lambda_n t}) = 0, \quad k = 1, 2, \ldots, m_n; \quad \lambda_n \in \Lambda.$$

So by Riesz representation theorem, there exists a $g \in L^q_{\alpha}$, such that $\|T\| = \|g\|_{q, -\alpha}$ and $T(f) = \int_{-\infty}^{+\infty} f(t)g(t)dt$ ($f \in L^p_{\alpha}$), where $\frac{1}{p} + \frac{1}{q} = 1$,

$$L^q_{\alpha} = \{g : \|g\|_{q, -\alpha} = \left(\int_{-\infty}^{+\infty} |g(t)e^{\alpha(t)}|^q dt\right)^{1/q} < +\infty\};$$

$$L^\infty_{\alpha} = \{g : \|g\|_{\infty, -\alpha} = \text{ess sup}\{|g(t)|e^{\alpha(t)} : t \in \mathbb{R}\} < +\infty\}.$$

For each $b > a_0 + 1$, the function

$$f(z) = \frac{1}{G_b(z)} \int_{-\infty}^{+\infty} e^{t(z+b)} g(t)dt, \quad x > a_0$$

is analytic in $\mathcal{C}_{-1} = \{z = x + iy : x > -1\}$, where $G_b(z)$ is defined by (11) with zeros $\lambda_n - b : n = 1, 2, \ldots$. By the Lemma 2, we have

$$|f(z)| \leq A \exp\{\tilde{\beta}(x) - x\lambda(|z|) + Ax\}, \quad x > 0,$$

where $\tilde{\beta}(x) = \sup\{|x| - \frac{a(t)}{2} : t \in \mathbb{R}\}$. Then (3) and (4) imply that for any $D_1 > D(q)$ and $A_1 > a_2$, there exists $r_0 > b + 1$ such that

$$n(r + q(r)) - n(r) \leq D_1 g(r), \quad r \geq r_0;$$

$$q(r) \leq A_1 r (\log r)^{-1} \leq 2^{-1} r, \quad r \geq r_0.$$
These imply that
\[n(t) - n(r) \leq D_1(t + q(t) - r), \quad t > r \geq r_0; \]
\[\lambda(R) - \lambda(r) \leq 2D_1(1 + A_1)(\log R - \log r + 1), \quad R > r \geq r_0. \]
In fact, if \(r \geq r_0 \), let \(p_0(r) = r \), \(p_{k+1}(r) = p_k(r) + q(p_k(r)) \) \((k = 0, 1, 2, \ldots)\). Then \(p_{k+1}(r) \geq p_k(r) + q(r) \) and \(p_k(r) \geq r + kq(r) \) \((k = 0, 1, 2, \ldots)\). So if \(l \geq 0 \) is an integer such that \(p_l(r) \leq t < p_{l+1}(r) \), then
\[n(t) - n(r) \leq \sum_{k=0}^{l} (n(p_{k+1}(r)) - n(p_k(r))) \leq D_1 \sum_{k=0}^{l} (p_{k+1}(r) - p_k(r)) \]
\[= D_1(p_l(r) + q(p_l(r)) - r) \leq D_1(t + q(t) - r). \]
Since
\[\lambda(R) - \lambda(r) \leq \int_r^R \frac{dn(t)}{t}, \quad R > r \geq r_0, \]
integrating by parts gives
\[\lambda(R) - \lambda(r) \leq 2D_1(1 + A_1)(\log R - \log r + 1), \quad R > r \geq r_0. \]
By Lemma 1, there exists \(a \in \mathbb{R} \) such that (5) holds.
Suppose that there exists a real number \(a \) such that (5) holds. If \(\lambda(r) \) is bounded, then (5) holds for any real number \(a \). So we may think that \(\lambda(r) \) is unbounded on \(r \geq 0 \). Let \(\varphi(t) \) be an even function such that \(\varphi(t) = a(\lambda(t) + a) \) for \(t \geq 0 \) and let \(u(z) \) be the Poisson integral of \(2\varphi(t) \), i.e.,
\[u(z) = \frac{x}{\pi} \int_{-\infty}^{+\infty} \frac{2\varphi(t)}{x^2 + (y - t)^2} dt. \quad (14) \]
Then \(u(x + iy) \) is harmonic in the half-plane \(\mathbb{C}_0 = \{ z = x + iy : x > 0 \} \) and there exists a positive constant \(A > 0 \) such that
\[u(z) \geq \frac{x}{\pi} \int_{-\infty}^{+\infty} \frac{2(\varphi(|z|) - A)}{x^2 + (y - t)^2} dt = \varphi(|z|) - A, \quad x > 0. \]
Therefore, there exists an analytic function \(g(z) \) on \(\mathbb{C}_0 \) such that \(\text{Re} g(z) = u(z) \geq \varphi(|z|) - A \) \((x > 0)\). For \(b > a_0 + 2 \), let
\[\varphi_b(z) = \frac{G_b(z)}{(1 + z + b)^4} \exp\{-g(z + b)\}, \quad (15) \]
where \(G_b(z) \) is defined by (11). Then \(\varphi_b(z) \) is analytic in \(\mathbb{C}_{-b} = \{ z = x + iy : x > -b \} \). By (12) there exists a positive constant \(A_2 \) such that
\[|\varphi_b(z)| \leq \frac{A}{1 + y^2} \exp\{\alpha^*(x - 1) + A_2x\}, \quad x > -b. \quad (16) \]
Let
\[h_b(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \varphi_b(iy)e^{-iy(t + A_2)} dy \]
be the Fourier transform of \(\varphi_b(iy)e^{-iyA_2} \). Then \(h_b(t) \) is bounded and continuous on \(\mathbb{R} \). By Cauchy’s formula,
\[h_b(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \varphi_b(x + iy)e^{-(x+iy)(t + A_2)} dy, \quad x > -b. \quad (18) \]
By (16), (18) and the formula of the Legendre transform for $\alpha(t)$, we see that $|h_b(t)| \leq A \exp(-\alpha(t) - t) \ (t \geq t_0)$, and that (by taking $x = -b + 1$ in (18)) $|h_b(t)| \leq A \exp((b-1)t) \ (t \leq t_0)$. Therefore, by (1), if $b > a_0 + 3$, $|h_b(t)| \leq A \exp\{-\alpha(t) - |t|\} \ (t \in \mathbb{R})$. By (18) and the inverse Fourier transform formula,

$$\varphi_0(z)e^{-A^2z} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} h_0(t)e^{zt}dt, \ x > a_0.$$

Therefore the bounded linear functional

$$T(h) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} h_b(t)h(t)dt, \ h \in L^p_{\alpha}$$

satisfies $T(t^{k-1}e^{\lambda_n t}) = 0 \ (k = 1, 2, \ldots, m_n; \lambda_n \in \Lambda)$, and

$$\|T\| = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{+\infty} |h_b(t)e^{\alpha(t)}|^q dt \right)^{\frac{1}{q}} > 0.$$

By the Riesz representation theorem, the space $E(\Lambda, M)$ is incomplete in L^p_{α}. This completes the proof of Theorem 1. \qed

References

