On Skew McCoy Rings

Xue Mei SONG1,*, Xu Dong LI1, Shi Zhou YANG2

1. College of Mathematics, Lanzhou City University, Gansu 730070, P. R. China;
2. College of Mathematics and Information Science, Northwest Normal University,
Gansu 730070, P. R. China

Abstract For a ring endomorphism α, we introduce α-skew McCoy rings which are generalizations of α-rigid rings and McCoy rings, and investigate their properties. We show that if $\alpha^t = I_R$ for some positive integer t and R is an α-skew McCoy ring, then the skew polynomial ring $R[x; \alpha]$ is α-skew McCoy. We also prove that if $\alpha(1) = 1$ and R is α-rigid, then $R[x; \alpha]/\langle x^2 \rangle$ is $\bar{\alpha}$-skew McCoy.

Keywords McCoy ring; skew McCoy ring; skew polynomial ring; rigid ring; skew Armendariz ring; upper triangular matrix ring.

Document code A

MR(2010) Subject Classification 16S36; 16S50

Chinese Library Classification O153.3

1. Introduction

All rings considered here are associative with identity. According to Nielsen [10], a ring R is called a left McCoy ring if whenever $f(x), g(x) \in R\![x]\setminus\{0\}$ satisfy $f(x)g(x) = 0$, then there exists a nonzero element $r \in R$ with $rg(x) = 0$. Similarly, right McCoy rings can be defined. If a ring is both left and right McCoy, then we say that the ring is a McCoy ring. Some properties of McCoy rings have been studied in Camillo and Nielsen [2, 9], Yang et al. [11, 12].

According to Krempa [7], an endomorphism α of a ring R is called rigid if $\alpha\alpha(a) = 0$ implies $a = 0$ for $a \in R$. We call a ring R α-rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism and α-rigid rings are reduced rings by Hong et al. [3, Proposition 5]. For an endomorphism α of a ring R, $R[x; \alpha]$ is reduced if and only if R is α-rigid by Hong et al. [4, Proposition 3]. Recall that for a ring R with a ring endomorphism $\alpha : R \to R$, a skew polynomial ring (also called an Ore extension of endomorphism type) $R[x; \alpha]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $xr = \alpha(r)x$ for all $r \in R$.

Received January 18, 2009; Accepted January 19, 2010

Supported by the Natural Science Foundation of Gansu Province (Grant No. 3ZS061-A25-015) and the Scientific Research Fund of Gansu Provincial Education Department (Grant No. 06021-21).

* Corresponding author

E-mail address: songxm@lztc.edu.cn (X. M. SONG); lixd@lztc.edu.cn (X. D. LI); yangsz@nwnu.edu.cn (S. Z. YANG)
Motivated by results in Hong et al. [3, 4], Nielsen [10] and so on, we investigate a generalization of α-rigid rings and McCoy rings which we call an α-skew McCoy ring.

2. Skew McCoy rings

Definition 2.1 Let α be an endomorphism of a ring R. Assume that $f(x) = \sum_{i=0}^{n} a_{i}x^{i}$, $g(x) = \sum_{j=0}^{m} b_{j}x^{j} \in R[x; \alpha] \setminus \{0\}$ satisfy $f(x)g(x) = 0$. We say that R is a left α-skew McCoy ring if there exists a nonzero element $r \in R$ with $rb_{j} = 0$ for all $0 \leq j \leq m$, and say that R is a right α-skew McCoy ring if there exists a nonzero element $s \in R$ with $a_{i}\alpha^{i}(s) = 0$ for all $0 \leq i \leq n$. If a ring is both left α-skew McCoy and right α-skew McCoy, then we say that the ring is an α-skew McCoy ring.

It can be easily checked that if R is a McCoy ring, then it is an I_{R}-skew McCoy ring, where I_{R} is an identity endomorphism of R, and thus every reversible ring (or reduced ring) R is I_{R}-skew McCoy since reversible rings are McCoy by Nielsen [10, Theorem 2]. However, the following example shows that there exists an I_{R}-skew McCoy ring R which is not reversible.

Example 2.2 Suppose that R is a McCoy ring. Let $aUT_{3}(R) = \left\{ \begin{pmatrix} a & b & d \\ 0 & a & c \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\}$.

Then $aUT_{3}(R)$ is an I_{R}-skew McCoy ring since $aUT_{3}(R)$ is McCoy by Yang and Song [11, Proposition 2.5 and Corollary 2.8]. Let $A = E_{23}$, $B = E_{12}$, where E_{ij}, a 3×3 matrix, is the matrix unit with 1 in the (i, j)th position and 0 elsewhere. Then $AB = 0$. But $BA = E_{13} \neq 0$. Thus $aUT_{3}(R)$ is not reversible.

Recall that a ring is called an Armendariz ring if $a_{i}b_{j} = 0$ for all i, j whenever polynomials $f(x) = \sum_{i=0}^{n} a_{i}x^{i}$, $g(x) = \sum_{j=0}^{n} b_{j}x^{j} \in R[x]$ satisfy $f(x)g(x) = 0$. For a monoid M, a ring R is called an M-Armendariz ring if whenever elements $a = a_{1}g_{1} + a_{2}g_{2} + \cdots + a_{n}g_{n}$, $\beta = b_{1}h_{1} + b_{2}h_{2} + \cdots + b_{m}h_{m} \in R[M]$ satisfy $a\beta = 0$, then $a_{i}b_{j} = 0$ for each i, j. A ring R is called a left M-McCoy ring if whenever elements $a = a_{1}g_{1} + a_{2}g_{2} + \cdots + a_{n}g_{n}$, $\beta = b_{1}h_{1} + b_{2}h_{2} + \cdots + b_{m}h_{m} \in R[M] \setminus \{0\}$ satisfy $a\beta = 0$, then there exists a nonzero element $r \in R$ with $r\beta = 0$, the right M-McCoy rings can be defined similarly. If a ring is both left and right M-McCoy, then we say that the ring is an M-McCoy ring. Armendariz rings are clearly McCoy. M-Armendariz rings are M-McCoy for any monoid M by Yang and Song [11, Theorem 2.2]. Power-serieswise Armendariz rings are power-serieswise McCoy by Yang et al. [12, Theorem 2.2]. Some properties of these rings were studied in Anderson and Camillo [1], Hong et al. [4], Huh et al. [5], Kim et al. [6], Liu [8], Yang and Song [11], and Yang et al. [12]. Now let α be an endomorphism of a ring R, one may conjecture that if R is α-skew Armendariz, then R is α-skew McCoy. However, the following example eliminates the possibility.

Example 2.3 ([4, Example 5]) Let $R = \mathbb{Z}_{2}[x]$, $\alpha : R \to R$ be an endomorphism defined by $\alpha(f(x)) = f(0)$. Then R is α-skew Armendariz by Hong et al. [4, Example 5]. However,
on skew McCoy rings

Theorem 2.5 Let \(\alpha \) be an endomorphism of a ring \(R \). If \(R \) is \(\alpha \)-skew Armendariz, then \(R \) is right \(\alpha \)-skew McCoy.

Proof Let \(f(x) = \sum_{i=0}^{n} a_i x^i \), \(g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \alpha] \setminus \{0\} \) satisfy \(f(x)g(x) = 0 \). Then \(a_i \alpha^i(b_j) = 0 \) for all \(i, j \) since \(R \) is \(\alpha \)-skew Armendariz. Since \(g(x) \neq 0 \), there exists \(j_0 \) such that \(b_{j_0} \in R \setminus \{0\} \). Hence \(a_i \alpha^i(b_{j_0}) = 0 \) for all \(i \). Therefore \(R \) is right \(\alpha \)-skew McCoy. \(\Box \)

Theorem 2.5 Let \(\alpha \) be an endomorphism of a ring \(R \). If \(R \) is \(\alpha \)-rigid, then \(R \) is \(\alpha \)-skew McCoy.

Proof Let \(f(x) = \sum_{i=0}^{n} a_i x^i \), \(g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \alpha] \setminus \{0\} \) with \(f(x)g(x) = 0 \). Then \(R \) is \(\alpha \)-skew Armendariz by Hong et al. [4, Corollary 4]. Thus \(a_i \alpha^i(b_j) = 0 \) for all \(0 \leq i \leq n, 0 \leq j \leq m \). Since \(f(x) \neq 0 \), there exists \(i_0 \) such that \(a_{i_0} \neq 0 \). Hence \(a_{i_0} \alpha^{i_0}(b_j) = 0 \) implies \(a_{i_0} b_j = 0 \) for all \(0 \leq j \leq m \) by Hong et al. [3, Lemma 4(iii)]. Therefore \(R \) is left \(\alpha \)-skew McCoy. Moreover, \(R \) is right \(\alpha \)-skew McCoy by Proposition 2.4. The proof is completed. \(\Box \)

The following example shows that the converse of Theorem 2.5 is not true.

Example 2.6 Let \(R = \{ \begin{pmatrix} r & a & b \\ 0 & r & a \\ 0 & 0 & r \end{pmatrix} | r \in \mathbb{Z}, a, b \in \mathbb{Q} \} \), where \(\mathbb{Z} \) and \(\mathbb{Q} \) are the sets of all integers and all rational numbers, respectively. Let \(\alpha : R \to R \) be an automorphism defined by \(\alpha \left(\begin{pmatrix} r & a & b \\ 0 & r & a \\ 0 & 0 & r \end{pmatrix} \right) = \begin{pmatrix} r & a/2 & b/4 \\ 0 & r & a/2 \\ 0 & 0 & r \end{pmatrix} \). Then

1. \(R \) is not \(\alpha \)-rigid since \(\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \alpha \left(\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = 0 \), but \(\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0 \) if \(b \neq 0 \).

2. \(R \) is \(\alpha \)-skew McCoy.

Let \(f(x) = A_0 + A_1 x + \cdots + A_n x^n \), \(g(x) = B_0 + B_1 x + \cdots + B_m x^m \in R[x; \alpha] \setminus \{0\} \) with \(f(x)g(x) = 0 \), where \(A_i = \begin{pmatrix} r_i & a_i & b_i \\ 0 & r_i & a_i \\ 0 & 0 & r_i \end{pmatrix} \) and \(B_j = \begin{pmatrix} s_j & c_j & d_j \\ 0 & s_j & c_j \\ 0 & 0 & s_j \end{pmatrix} \) for \(0 \leq i \leq n, 0 \leq j \leq m \).

Since \(f(x), g(x) \neq 0 \), by a similar proof to Hong et al. [4, Example 1] we have that \(A_i = \begin{pmatrix} 0 & a_i & b_i \\ 0 & 0 & a_i \\ 0 & 0 & 0 \end{pmatrix} \) and \(B_j = \begin{pmatrix} 0 & c_j & d_j \\ 0 & 0 & c_j \\ 0 & 0 & 0 \end{pmatrix} \) for \(0 \leq i \leq n, 0 \leq j \leq m \). Take \(C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \). We have \(CB_j = 0 \) for all \(j \), and \(A_i \alpha^i(C) = 0 \) for all \(i \). Thus \(R \) is \(\alpha \)-skew McCoy.

The following example shows that there exists an endomorphism \(\alpha \) of a McCoy ring \(R \) such that \(R \) is not \(\alpha \)-skew McCoy.

Example 2.7 ([4, Example 2]) Let \(R = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \). Then \(R \) is a commutative reduced ring. Thus it is McCoy. Let \(\alpha : R \to R \) be an endomorphism defined by \(\alpha((a, b)) = (b, a) \). Then for \(f(x) = (1, 0) + (1, 0)x, g(x) = (0, 1) + (1, 0)x \in R[x; \alpha] \setminus \{0\} \), \(f(x)g(x) = 0 \). But for \((a, b) \in R \), if \((a, b)g(x) = 0 \), then \(a = b = 0 \). Thus \(R \) is not left McCoy. Similarly, if \(f(x)(a, b) = 0 \), then...
Recall that if \(\alpha \) is an endomorphism of a ring \(R \), then the map \(R[x] \to R[x] \) defined by
\[
\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=0}^{n} \alpha(a_i) x^i
\]
is an endomorphism of the polynomial ring \(R[x] \) and clearly this map extends \(\alpha \). We shall also denote the extended map \(R[x] \to R[x] \) by \(\alpha \) and the image of \(f \in R[x] \) by \(\alpha(f) \).

Theorem 2.8 Let \(\alpha \) be an endomorphism of a ring \(R \) and \(\alpha^t = I_R \) for some positive integer \(t \). If \(R \) is \(\alpha \)-skew McCoy, then \(R[x; \alpha] \) is \(\alpha \)-skew McCoy.

Proof Let \(p(y) = f_0 + f_1 y + \cdots + f_n y^n \), \(q(y) = g_0 + g_1 y + \cdots + g_m y^m \in R[x; \alpha][y; \alpha]\{0\} \) with \(p(y)q(y) = 0 \). Assume that \(f_i = a_{i0} + a_{i1} x + \cdots + a_{iu} x^u \), \(g_j = b_{j0} + b_{j1} x + \cdots + b_{jv} x^v \) for each \(0 \leq i \leq n \), and \(0 \leq j \leq m \), where \(a_{i0}, a_{i1}, \ldots, a_{iu}, b_{j0}, b_{j1}, \ldots, b_{jv} \in R \). Take a positive integer \(k \) such that \(k > \max\{\deg(f_i), \deg(g_j)\} \) for any \(0 \leq i \leq n \), and \(0 \leq j \leq m \), where the degree is as polynomial in \(R[x; \alpha] \) and the degree of zero polynomial is taken to be 0. Suppose that
\[
p(x^k) = f_0 + f_1 x^{k+1} + \cdots + f_n x^{ntk+n}, \quad q(x^k) = g_0 + g_1 x^{tk+1} + \cdots + g_m x^{mtk+m}.\]
Then \(p(x^k) \), \(q(x^k) \in R[x; \alpha]\{0\} \), and the set of coefficients of \(f_i \)'s (resp., \(g_j \)'s) equals the set of coefficients of \(p(x^k) \) (resp., \(q(x^k) \)). It is easy to check that \(p(x^k)q(x^k) = 0 \in R[x; \alpha] \) since \(p(y)q(y) = 0 \) in \(R[x; \alpha][y; \alpha] \) and \(\alpha^k = I_R \). Since \(R \) is \(\alpha \)-skew McCoy, there exist \(r, s \in R \{0\} \) such that \(rq(x^k) = 0 \), and \(p(x^k)s = 0 \). \(rq(x^k) = 0 \) implies \(rb_{jk} = 0 \) for any \(0 \leq j \leq m \), and \(0 \leq k \leq v_j \). Hence \(rg_j = 0 \) for any \(0 \leq j \leq m \). Therefore \(R[x; \alpha] \) is left \(\alpha \)-skew McCoy. \(p(x^k)s = 0 \) implies \(a_{il} \alpha^{{tk+1}+l}(s) = 0 \) for any \(0 \leq i \leq n \), and \(0 \leq l \leq u_i \). Thus \(a_{il} \alpha^{i+l}(s) = 0 \) for any \(0 \leq i \leq n \), and \(0 \leq l \leq u_i \) since \(\alpha^{{tk}+n} = I_R \). Hence we have
\[
f_i \alpha^i(s) = (a_{i0} + a_{i1} x + \cdots + a_{iu} x^u) \alpha^i(s) \\
= a_{i0} \alpha^{i+0}(s) + a_{i1} \alpha^{i+1}(s) x + \cdots + a_{iu} \alpha^{i+u}(s) x^u = 0
\]
for any \(0 \leq i \leq n \). Therefore \(R[x; \alpha] \) is right \(\alpha \)-skew McCoy. The proof is completed. \(\square \)

Recall that an element \(a \) in \(R \) is called regular if \(r_r(a) = 0 = l_r(a) \), i.e., \(a \) is not a zero divisor. For subrings of an \(\alpha \)-skew McCoy ring, we have the following.

Proposition 2.9 Let \(\alpha \) be an endomorphism of a ring \(R \) and \(I \) be an ideal of \(R \) satisfying that every nonzero element in \(I \) is regular. If \(R \) is \(\alpha \)-skew McCoy, then \(I \) is \(\alpha \)-skew McCoy (without identity).

Proof Let \(f(x) = \sum_{i=0}^{n} a_i x^i \), \(g(x) = \sum_{j=0}^{m} b_j x^j \in I[x; \alpha]\{0\} \) with \(f(x)g(x) = 0 \). Since \(I \) is an ideal of \(R \) and \(R \) is \(\alpha \)-skew McCoy, there exist nonzero elements \(r, s \in R \) satisfying \(rb_j = 0 \) for any \(0 \leq j \leq m \), and \(a_i \alpha^i(s) = 0 \) for any \(0 \leq i \leq n \). Therefore \(tr, st \in I \{0\} \) for any nonzero element \(t \in I \) (Otherwise, if \(tr = 0 \) (resp., \(st = 0 \)) for a element \(t \in I \{0\} \), then \(r \in r_r(t) \) (resp., \(s \in l_r(t) \)). Hence \(r = 0 \) (resp., \(s = 0 \)) since every nonzero element in \(I \) is regular. This is a contradiction). Consequently, we have
\[
0 = t(rb_j) = (tr)b_j, \quad 0 = (a_i \alpha^i(s)) \alpha^i(t) = a_i \alpha^i(st)
\]
for any \(0 \leq i \leq n \), and \(0 \leq j \leq m \). Thus \(I \) is \(\alpha \)-skew McCoy. \(\square \)
Let R_i be a ring and α_i an endomorphism of R_i for each $i \in I$. For the product $\prod_{i \in I} R_i$ of R_i, the endomorphism $\bar{\alpha} : \prod_{i \in I} R_i \to \prod_{i \in I} R_i$ defined by $\bar{\alpha}((a_i)) = (\alpha(a_i))$. Yang et al. [12, Theorem 2.12] have shown that $\prod_{i \in I} R_i$ is a power-serieswise McCoy ring if and only if each R_i is.

Proposition 2.10 Let α_i be an endomorphism of R_i, $i \in I$. Then $\prod_{i \in I} R_i$ is $\bar{\alpha}$-skew McCoy if and only if each R_i is $\bar{\alpha}_i$-skew McCoy.

Proof The proof is similar to Yang et al. [12, Theorem 2.12]. \square

Corollary 2.11 Let R be an abelian ring, α an endomorphism of R, and $e^2 = e \in R$. If eR and $(1 - e)R$ are α-skew McCoy, then R is an α-skew McCoy.

Proof Since R is an abelian ring and $e^2 = e \in R$, $R = eR \times (1 - e)R$. Hence the conclusion follows from Proposition 2.10. \square

Lemma 2.12 Let α be an endomorphism and R an α-rigid ring. If $f(x) = \sum_{i=0}^n a_i x^i$, $g(x) = \sum_{j=0}^m b_j x^j \in R[x; \alpha]$ satisfy $f(x)g(x) = 0$, then $f(x)\alpha(g(x)) = 0$ and $\alpha(f(x))g(x) = 0$.

Proof Since R in α-skew Armendariz by Hong et al. [4, Corollary 4], $a_i \alpha^i(b_j) = 0$ for each i, j. Thus $a_i \alpha^i+1(b_j) = 0$ for each i, j by Hong et al. [3, Lemma 4(i)]. Hence $f(x)\alpha(g(x)) = 0$. Since $R[x; \alpha]$ is reduced by Hong et al. [4, Proposition 3], $\alpha(f(x))g(x) = 0$. \square

For an ideal I of a ring R, if $\alpha(I) \subseteq I$, then $\bar{\alpha} : R/I \to R/I$ defined by $\bar{\alpha}(a + I) = \alpha(a) + I$ is an endomorphism of a factor ring R/I.

Theorem 2.13 Let α be an endomorphism of R and $\alpha(1) = 1$. If R is α-rigid, then $R[x; \alpha]/\langle x^2 \rangle$ is $\bar{\alpha}$-skew McCoy.

Proof Suppose that $p(y) = \sum_{i=0}^n \bar{f}_i y^i$, $q(y) = \sum_{j=0}^m \bar{g}_j y^j \in (R[x]/\langle x^2 \rangle)[y; \bar{\alpha}] \setminus \{0\}$ with $p(y)q(y) = 0$. Let $\bar{f}_i = a_{i0} + a_{i1} \bar{x}$, $\bar{g}_j = b_{j0} + b_{j1} \bar{x}$, where $a_{i0}, a_{i1}, b_{j0}, b_{j1} \in R$, $\bar{x} = x + \langle x^2 \rangle$. Note that $\bar{x}y = y\bar{x}$ since $\alpha(1) = 1$. Thus $p(y) = h_0 + h_1 \bar{x}$ and $q(y) = k_0 + k_1 \bar{x}$, where $h_0 = \sum_{i=0}^n a_{i0} y^i$, $h_1 = \sum_{i=0}^n a_{i1} y^i$, $k_0 = \sum_{j=0}^m b_{j0} y^j$ and $k_1 = \sum_{j=0}^m b_{j1} y^j$. Since $\bar{x}^2 = 0$ and $\bar{a} = \alpha(a)\bar{x}$ for any $a \in R$, we have

$$0 = p(y)q(y) = (h_0 + h_1 \bar{x})(k_0 + k_1 \bar{x}) = h_0 k_0 + (h_0 k_1 + h_1 \alpha(k_0))\bar{x}.$$

Hence in $R[y; \bar{\alpha}]$ we have $h_0 k_0 = 0$ and $h_0 k_1 + h_1 \alpha(k_0) = 0$. Thus $h_0 k_0 = 0$ implies $h_0 \alpha(k_0) = 0$ by Lemma 2.12. Since $R[y; \alpha](\cong R[x; \alpha])$ is reduced, $\alpha(k_0) h_0 = 0$, and so $0 = \alpha(k_0)(h_0 k_1 + h_1 \alpha(k_0)) = \alpha(k_0) h_1 \alpha(k_0) = (h_1 \alpha(k_0))^2$. Thus $h_1 \alpha(k_0) = 0$, and hence $h_0 k_1 = 0$.

If $h_0 \neq 0$, then the equation $0 = h_0 (k_0 + k_1)$ implies that

$$0 = h_0 (k_0 + k_1) = h_0 (\sum_{j=0}^m b_{j0} y^j + \sum_{j=0}^m b_{j1} y^{j+m+1}).$$

Since R is (left) α-skew McCoy by Theorem 2.5, there exists $r \in R \setminus \{0\}$ such that $rb_{j0} = 0$ and $rb_{j1} = 0$ for any j. Hence $r\bar{g}_j = 0$ for any $0 \leq j \leq m$.

Otherwise, if $h_0 = 0$, then $h_1 \neq 0$, and $0 = p(y)q(y) = (h_1 \bar{x})(k_0 + k_1 \bar{x}) = (h_1 \alpha(k_0))\bar{x}$. Thus
$h_1\alpha(k_0) = 0$. If $\alpha(k_0) \neq 0$, then there exists $s \in R\setminus\{0\}$ such that $\alpha(s) = 0$ for any j since R is (left) α-skew McCoy. Let $r = s\bar{x}$. Then $r \in (R[x; \alpha]/(x^2))\setminus\{0\}$ and $r\bar{g}_j = s\bar{x}(b_{j0} + b_{j1} \bar{x}) = s\alpha(b_{j0})\bar{x} = 0$ for any $0 \leq j \leq m$. If $\alpha(k_0) = 0$, then let $r = \bar{x}$, and $r\bar{g}_j = 0$ for any $0 \leq j \leq m$.

So $R[x; \alpha]/(x^2)$ is left $\bar{\alpha}$-skew McCoy.

Moreover, the equations $h_0k_0 = 0$ and $h_0k_1 + h_1\alpha(k_0) = 0$ yield that $h_0\alpha(k_0) = 0$ and $h_1\alpha(k_0) = 0$. Thus $h_1y^{n+1}\alpha(k_0) = h_1\alpha^{n+2}(k_0)y^{n+1} = 0$ by Lemma 2.12. Hence we have

$$0 = (h_0 + h_1y^{n+1})\alpha(k_0) = \sum_{i=0}^{n} a_{i0}y^i + \sum_{i=0}^{n} a_{i1}y^{i+n+1} + \sum_{j=0}^{m} a_{j0}\alpha(b_{j0})y^j.$$

Then the right case can be proved similarly as above. \square

Proposition 2.14 Let α be an endomorphism of a ring R and I an ideal of R with $\alpha(I) \subseteq I$. If $a\alpha(a) \in I$ implies $a \in I$ for $a \in R$, then R/I is $\bar{\alpha}$-skew McCoy.

Proof By the proof of Hong et al. [4, Proposition 9], R/I is $\bar{\alpha}$-rigid. Thus R/I is $\bar{\alpha}$-skew McCoy by Theorem 2.5. \square

Lemma 2.15 Let α be a monomorphism of a ring R, I an α-rigid ideal (without identity) of R with $\alpha(I) \subseteq I$, $r \in I$ and $s \in R$. Then we have the following:

1. If $rs = 0$, then $\alpha^k(s) = \alpha^k(r)s = 0$ for any positive integer k.
2. If $r\alpha^k(s) = 0$ (or $\alpha^k(r)s = 0$) for some positive integer k, then $rs = 0$.

Proof The proof is similar to Hong et al. [3, Lemma 4]. \square

Proposition 2.16 Let α be a monomorphism of a ring R, I an α-rigid ideal (without identity) of R with $\alpha(I) \subseteq I$ and every nonzero element in I regular. Suppose $br \in I\setminus\{0\}$ implies $b\alpha(r) \in I\setminus\{0\}$ for $b, r \in R$. If R/I is reversible and $\bar{\alpha}$-skew McCoy, then R is α-skew McCoy.

Proof Let $f(x) = \sum_{i=0}^{n} a_{i}x^i$, $g(x) = \sum_{j=0}^{m} b_{j}x^j \in R[x; \alpha]\setminus\{0\}$ with $f(x)g(x) = 0$. Consider the following three cases.

Case 1 Both $f(x)$ and $g(x)$ are in $I[x; \alpha]$. By Theorem 2.5, I is α-skew McCoy. Thus there exist nonzero $r, s \in I \subseteq R$ such that $rb_j = 0$, $a_i\alpha^i(s) = 0$ for all i and j.

Case 2 One and only one of $f(x)$, $g(x)$ is in $I[x; \alpha]$. Without loss of generality, assume that $f(x) \in I[x; \alpha]$, but $g(x) \notin I[x; \alpha]$. Using Lemma 2.15 and I is α-rigid repeatedly, similar to the proof of Hong et al. [3, Proposition 6], we have that $a_i b_j = 0$ for all i, j. Since $f(x), g(x) \neq 0$, there are i_0, j_0 such that $a_{i_0}, b_{j_0} \in R\setminus\{0\}$. Take $r = a_{i_0}$, $s = b_{j_0}$, and hence $rb_j = 0$, and $a_i\alpha^i(s) = 0$ for all i and j.

Case 3 Neither $f(x)$ nor $g(x)$ is in $I[x; \alpha]$. Then $\sum_{i=0}^{n} a_{i}x^i, \sum_{j=0}^{m} b_{j}x^j \in (R/I)[x; \bar{\alpha}]\setminus\{0\}$. Since R/I is $\bar{\alpha}$-skew McCoy, there exist $\overline{r}, \overline{s} \in R/I\setminus\{0\}$ such that $\overline{r}\overline{b}_j = \overline{0}$, $\overline{a}_i\alpha^i(\overline{s}) = \overline{0}$. Since R/I is reversible, $\overline{r}\overline{s} = \overline{0}$, $\alpha^i(\overline{s})\overline{a}_i = \overline{0}$. So $r\bar{b}_j, b_j r, a_i\alpha^i(s), \alpha^i(s)a_i \in I$ for all i, j. We claim that $\alpha^i(s)a_i = 0$ for all i, and $b_j r = 0$ for all j.

Assume that there exists some i such that $\alpha^i(s)a_i \neq 0$. Let t be the smallest one relation
to the property. Then \(0 = \alpha^i(s)f(x)g(x) = (\sum_{i=0}^n \alpha^i(s)a_ix^i)(\sum_{j=0}^mb_jx^j)\) implies \(g(x) = 0\) since \(\alpha^i(s)a_i \in R\{0\}\) is regular and \(\alpha\) is monomorphism, a contradiction. Similarly, if there exists some \(j\) such that \(b_jr \neq 0\). Let \(n\) be the smallest one relation to the property. Since \(I\) is reduced, \(b_jr = 0\) yields \(b_j\alpha^i(r) = 0\) for \(0 \leq j \leq n - 1\). Thus \(0 = f(x)g(x)r = (\sum_{i=0}^n a_ix^i)(\sum_{j=1}^mb_j\alpha^i(r)x^j)\). Since \(b_jr \in I\{0\}\), we have \(b_i\alpha^i(r) \in I\{0\}\). Hence \(0 = f(x)g(x)r\) implies \(f(x) = 0\) since \(b_i\alpha^i(r) \in I\{0\}\) is regular and \(\alpha\) is monomorphism, this is a contradiction. Thus \(\alpha^i(s)a_i = 0\) for all \(i\), and \(b_jr = 0\) for all \(j\).

Hence \(R\) is \(\alpha\)-skew McCoy. \(\square\)

In the last part of this section, we consider the \(n \times n\) upper triangular matrix ring \(T_n(R)\) over a ring \(R\). Let \(aUTn(R)\) be the ring consisting of \(n \times n\) upper triangular matrices with equal diagonal entries over \(R\), where \(n \geq 2\) is a positive integer. Hong et al. [4, Proposition 17] proved that if \(R\) is an \(\alpha\)-rigid ring, then \(aUT_3(R)\) is \(\tilde{\alpha}\)-skew Armendariz, but \(aUTn(R)\) is not \(\tilde{\alpha}\)-skew Armendariz for \(n \geq 4\) (see [4, Example 18]), where \(\alpha\) is an endomorphism of a ring \(R\) and \(\tilde{\alpha}\) is the endomorphism of \(aUTn(R)\) defined by \(\tilde{\alpha}((a_{ij})) = (\alpha(a_{ij}))\).

By Camillo and Nielsen [2, Proposition 10.2], the full matrix ring \(M_n(R)\) and \(T_n(R)\) over a nonzero ring \(R\) need not to be \(I_R\)-skew McCoy.

Proposition 2.17 Let \(n \geq 2\). Then a ring \(R\) is \(\alpha\)-skew McCoy if and only if \(aUTn(R)\) is \(\tilde{\alpha}\)-skew McCoy.

Proof The proof is similar to Yang and Song [11, Theorem 2.7] \(\square\)

Corollary 2.18 A ring \(R\) is \(\alpha\)-skew McCoy if and only if the trivial extension

\[T(R, R) = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in R \right\}\]

of \(R\) is \(\tilde{\alpha}\)-skew McCoy.

References

