Generalized Jordan Derivations Associate with Hochschild 2-Cocycles on Triangular Matrices

Jiankui LI, Qihua SHEN*
Department of Mathematics, East China University of Science and Technology, Shanghai 200237, P. R. China

Abstract In this paper, we prove that every generalized Jordan derivation associate with a Hochschild 2-cocycle from the algebra of upper triangular matrices to its bimodule is the sum of a generalized derivation and an antiderivation.

Keywords generalized Jordan derivation; generalized derivation; Hochschild 2-cocycle.

MR(2010) Subject Classification 47B47; 47L35

1. Introduction

Let \(R \) be a commutative ring with identity, \(\mathcal{A} \) be an algebra over \(R \) and \(\mathcal{M} \) be an \(\mathcal{A} \)-bimodule. Let \(\alpha : \mathcal{A} \times \mathcal{A} \to \mathcal{M} \) be an \(R \)-bilinear map, that is, an \(R \)-linear map on each component. \(\alpha \) is called a Hochschild 2-cocycle if
\[
a\alpha(b, c) - \alpha(ab, c) + a\alpha(a, b) - \alpha(a, b)c = 0
\]
for all \(a, b, c \in \mathcal{A} \). Let \(\Delta, \varphi \) and \(\delta \) be \(R \)-linear maps from \(\mathcal{A} \) to \(\mathcal{M} \). \(\varphi \) is called a generalized derivation if there exists a Hochschild 2-cocycle \(\alpha \) such that
\[
\varphi(ab) = \varphi(a)b + a\varphi(b) + \alpha(a, b)
\]
for all \(a, b \in \mathcal{A} \), and \(\Delta \) is called a generalized Jordan derivation if
\[
\Delta(a^2) = \Delta(a)a + a\Delta(a) + \alpha(a, a)
\]
for all \(a \in \mathcal{A} \). We denote them by \((\varphi, \alpha)\) and \((\Delta, \alpha)\), respectively. Moreover, \(\delta \) is called an antiderivation if
\[
\delta(ab) = \delta(b)a + b\delta(a)
\]
for all \(a, b \in \mathcal{A} \).

Different types of generalized derivations as well as generalized Jordan derivations have been introduced by several authors. For instance, Brešar in [1] defined one kind of generalized derivations in the sense that if \(\varphi \) is an \(R \)-linear map from \(\mathcal{A} \) to \(\mathcal{M} \) and if there exists a derivation \(d \) from \(\mathcal{A} \) to \(\mathcal{M} \) such that \(\varphi(ab) = \varphi(a)b + ad(b) \) for all \(a, b \in \mathcal{A} \), then \(\varphi \) is a generalized derivation;
another kind of generalized derivations was introduced by Nakajima [2] as follows. An \(R \)-linear map \(\varphi \) from \(A \) to \(M \) is called a generalized derivation if there exists an element \(\omega \in M \) such that
\[
\varphi(ab) = \varphi(a)b + a\varphi(b) + a\omega b
\] for all \(a, b \in A \). In the case that \(A \) has an identity element \(I \), this is equivalent to that \(\varphi \) satisfies
\[
\varphi(ab) = \varphi(a)b + a\varphi(b) - a\varphi(I)b
\] for all \(a, b \in A \). Nakajima in [3] defined the type of generalized derivations associate with Hochschild 2-cocycles and pointed out that this type includes not only the generalized derivations mentioned above, but left multipliers and \((\sigma, \tau)\)-derivations as well. For more details we refer the reader to [3–6] and references therein.

Throughout this paper, by \(M_n(R) \), \(n \geq 2 \), we denote the algebra of all \(n \times n \) matrices over \(R \), by \(T_n(R) \) its subalgebra of all upper triangular matrices, and by \(D_n(R) \) its subalgebra of all diagonal matrices. Benkovič in [7] showed that every Jordan derivation from \(T_n(R) \) to its bimodule is the sum of a derivation and an antiderivation. Ji and Ma [8] extended this result to generalized Jordan derivations in the usual sense, i.e., if \(\Delta \) is a generalized Jordan derivation from \(T_n(R) \) to its bimodule in the sense
\[
\Delta(a^2) = \Delta(a)a + a\Delta(a) - a\Delta(I)a
\]
for all \(a \in T_n(R) \), then \(\Delta \) is the sum of a generalized derivation \(\varphi \) and an antiderivation \(\delta \), where \(\varphi \) is such that
\[
\varphi(ab) = \varphi(a)b + a\varphi(b) - a\varphi(I)b
\]
for all \(a, b \in T_n(R) \). In this note we generalize the result above to show that every generalized Jordan derivation \((\Delta, \alpha)\) associate with Hochschild 2-cocycle \(\alpha \) from \(T_n(R) \) to its bimodule is the sum of a generalized derivation \((\varphi, \alpha)\) and an antiderivation. We shall assume, without further mention, that all algebras and all modules considered in this paper is 2-torsionfree.

2. Proof of the main result

Let \(A \) be an algebra with identity over \(R \) and \(M \) be an \(A \)-bimodule. As usual, we regard \(M \) as an \(R \)-bimodule by actions \(rm = mr = (rI)m = m(rI) \) for all \(r \in R \) and \(m \in M \), where \(I \) is the identity of \(A \). We begin with the following lemma which is a modification of Lemma 2 in [3]. For the sake of completeness, we present the proof here.

Lemma 2.1 Let \(\Delta \) be an \(R \)-linear map from \(A \) to its bimodule \(M \) and \(\alpha: A \times A \rightarrow M \) be a Hochschild 2-cocycle. Then the following relations are equivalent:

1) \((\Delta, \alpha)\) is a generalized Jordan derivation.

2) For all \(a, b \in A \), we have
\[
\Delta(ab + ba) = \Delta(a)b + a\Delta(b) + \Delta(b)a + ba\Delta(a) + \alpha(a, b) + \alpha(b, a). \tag{5}
\]

3) For all \(a, b \in A \), we have
\[
\Delta(aba) = \Delta(a)ba + a\Delta(b)a + ab\Delta(a) + a\alpha(b, a) + \alpha(a, ba). \tag{6}
\]

Proof 1)\(\Rightarrow\)2). Since \(\Delta(a^2) = \Delta(a)a + a\Delta(a) + \alpha(a, a) \) for all \(a \in A \), replacing \(a \) by \(a + b \) gives (5).
2)⇒3). Substituting $ab + ba$ for b in (5) and using the 2-cocycle condition, we have

$$2\Delta(ab) = \Delta(a(ab + ba) + (ab + ba)a) - \Delta(a^2b + ba^2)$$

$$= 2[\Delta(a)ba + a\Delta(b)a + ab\Delta(a)] +$$

$$a[\alpha(a, b) + \alpha(b, a)] + \alpha(a, ab) + \alpha(a, ba) +$$

$$[\alpha(a, b) + \alpha(b, a)]a + \alpha(ab, a) + \alpha(ba, a) -$$

$$[\alpha(a, a)b + \alpha(a^2, b) + ba(a, a) + \alpha(b, a^2)]$$

$$= 2[\Delta(a)ba + a\Delta(b)a + ab\Delta(a)] +$$

$$[\alpha(a, b) - \alpha(b, a) + \alpha(a, ab) - \alpha(a, b)b] -$$

$$[\alpha(a, b) - \alpha(b, a) + \alpha(b, a^2) - \alpha(b, a)a] +$$

$$\alpha(a, b) + \alpha(a, ba) + \alpha(a, b)a + \alpha(ab, a)$$

$$= 2[\Delta(a)ba + a\Delta(b)a + ab\Delta(a)] +$$

$$aa(a, b) + \alpha(a, ba) + \alpha(a, b)a + \alpha(ab, a).$$

Since $\alpha(a, b) + \alpha(a, ba) = \alpha(ab, a) + \alpha(a, b)a$ and \mathcal{M} is 2-torsionfree, we have the relation (6).

3)⇒1). Taking $a = b = I$ in (6) yields $\Delta(I) = -\alpha(I, I)$. Then putting $b = I$ in (6) gives (1), since $a\Delta(I)a = -\alpha(I, I, a) = -\alpha(I, a)$. This completes the proof. □

For any idempotent $e \in \mathcal{A}$, (3) gives

$$\Delta(e) = \Delta(e)c + e\Delta(e) + \alpha(c, e).$$

(7)

For any $a \in \mathcal{A}$ satisfying $ae = ea = 0$, Lemma 2.1 implies $0 = \Delta(\alpha e + ea) = \Delta(a)e + a\Delta(e) +$$

$$\Delta(e)a + e\Delta(a) + \alpha(a, e) + \alpha(e, a).$$

Multiplying e from the right yields

$$\Delta(a)e + a\Delta(e)e + e\Delta(a)e + \alpha(a, e)e + \alpha(e, a)e = 0.$$ (8)

By the fact $0 = \Delta(\alpha e) = e\Delta(a)e + \alpha(a, e) = e\Delta(a)e + \alpha(e, a)e$, (8) becomes $\Delta(a)e + a\Delta(e)e +$$

$$\alpha(a, e)e = 0.$$

Notice that $\alpha\Delta(e) = \alpha(\Delta(e)e + e\Delta(e) + \alpha(e, e)] = a\Delta(e)e + \alpha(e, e) = a\Delta(e)e -$$

$$\alpha(a, e) + \alpha(a, e)e$, and hence we obtain

$$\Delta(a)e + a\Delta(e) + \alpha(a, e) = 0 = \Delta(e)a + e\Delta(a) + \alpha(e, a)$$ (9)

for any idempotent $e, a \in \mathcal{A}$ such that $ae = ea = 0$.

Now we assume that (Δ, α) is a generalized Jordan derivation from $\mathcal{T}_n(\mathcal{R})$ to its bimodule

\mathcal{M}. Let e_{ij} be the element in $\mathcal{M}_n(\mathcal{R})$ with entries I at the position i, j and 0 otherwise for any

$1 \leq i, j \leq n$. By (7) we have

$$\Delta(e_{ii}) = \Delta(e_{ii})e_{ii} + e_{ii}\Delta(e_{ii}) + \alpha(e_{ii}, e_{ii})$$ (10)

and

$$e_{ki}\Delta(e_{ii})e_{ij} = -e_{ki}\alpha(e_{ii}, e_{ii})e_{ij}$$ (11)

for all i and $k \leq i \leq j$. From (5) we obtain that

$$\Delta(e_{ij}) = \Delta(\alpha(e_{ii})e_{ij} + e_{ij}e_{ii})$$

$$= \Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \Delta(e_{ij})e_{ii} + e_{ij}\Delta(e_{ii}) + \alpha(e_{ii}, e_{ij}) + \alpha(e_{ij}, e_{ii})$$ (12)
whenever $1 \leq i < j \leq n$. Furthermore, (9) gives that
\begin{equation}
\Delta(e_{kj})e_{ii} + e_{kj}\Delta(e_{ii}) + \alpha(e_{kj}, e_{ii}) = 0 = \Delta(e_{ii})e_{kj} + e_{ii}\Delta(e_{kj}) + \alpha(e_{ii}, e_{kj}) \tag{13}
\end{equation}
for all $k, j \neq i$.

Now define an \mathcal{R}-linear map φ from $\mathcal{T}_n(\mathcal{R})$ to \mathcal{M} by
\begin{equation}
\varphi(e_{ij}) = \Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \alpha(e_{ii}, e_{ij}), \quad 1 \leq i \leq j \leq n. \tag{14}
\end{equation}
According to (10), we have $\varphi(e_{ii}) = \Delta(e_{ii})$ for all $1 \leq i \leq n$.

Lemma 2.2 φ is a generalized derivation associate with Hochschild 2-cocycle α.

Proof It is enough to check that
\begin{equation}
\varphi(e_{ij}e_{kl}) = \varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \alpha(e_{ij}, e_{kl}) \tag{15}
\end{equation}
for all $i \leq j$ and $k \leq l$. We consider two cases.

Case 1 $j \neq k$. Our goal is to show that $\varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \alpha(e_{ij}, e_{kl}) = 0$, for $\varphi(e_{ij}e_{kl}) = 0$.

By (14) we have
\begin{align*}
\varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \alpha(e_{ij}, e_{kl}) \\
= [\Delta(e_{ii})e_{ij} + e_{ii}\Delta(e_{ij}) + \alpha(e_{ii}, e_{ij})]e_{kl} + \\
e_{ij}[\Delta(e_{kk})e_{kl} + e_{kk}\Delta(e_{kl}) + \alpha(e_{kk}, e_{kl})] + \alpha(e_{ij}, e_{kl}) \\
= e_{ii}\Delta(e_{ij})e_{kl} + \alpha(e_{ii}, e_{ij})e_{kl} + e_{ij}\Delta(e_{kk})e_{kl} + e_{ij}\alpha(e_{kk}, e_{kl}) + \alpha(e_{ij}, e_{kl}). \tag{16}
\end{align*}

Since $e_{ij}\alpha(e_{kk}, e_{kl}) = -\alpha(e_{ij}, e_{kl}) + \alpha(e_{ij}, e_{kk})e_{kl} = -\alpha(e_{ij}, e_{kl}) + [e_{ii}\alpha(e_{ij}, e_{kk}) - \alpha(e_{ii}, e_{ij})e_{kk}]e_{kl}$, (16) becomes
\begin{equation}
e_{ii}\Delta(e_{ij})e_{kl} + e_{ij}\Delta(e_{kk})e_{kl} + e_{ii}\alpha(e_{ij}, e_{kk})e_{kl}. \tag{17}
\end{equation}

If $i \neq k$, then (13) implies
\begin{equation}
e_{ii}[\Delta(e_{ij})e_{kk} + e_{ij}\Delta(e_{kk})]e_{kl} = 0. \tag{18}
\end{equation}

If $i = k$, then (12) gives
\begin{align*}
e_{ii}\Delta(e_{ij})e_{il} + e_{ij}\Delta(e_{ii})e_{il} + e_{ii}\alpha(e_{ij}, e_{ii})e_{il} \\
= e_{ii}\Delta(e_{ij})e_{il} + e_{ij}\Delta(e_{ii})e_{il} + [\alpha(e_{ij}, e_{ii}) + \alpha(e_{ii}, e_{ij})]e_{il}e_{il} \\
= [\Delta(e_{ii}) - \Delta(e_{ij})]e_{ij} - \Delta(e_{ij})e_{ii} - \alpha(e_{ij}, e_{ii})e_{il} + \alpha(e_{ij}, e_{ii})e_{il} \\
= -\alpha(e_{ij}, e_{ii})e_{il} + \alpha(e_{ij}, e_{ii})e_{il} = 0.
\end{align*}

Hence (15) holds true in the first case.

Case 2 $j = k$. Now we have to show that
\[\varphi(e_{il}) = \varphi(e_{ij})e_{jl} + e_{ij}\varphi(e_{jl}) + \alpha(e_{ij}, e_{jl}).\]

Assume $i < j < l$. Then (14) gives us
\[\varphi(e_{ij})e_{jl} + e_{ij}\varphi(e_{jl}) + \alpha(e_{ij}, e_{jl}).\]
Generalized Jordan derivations associated with Hochschild 2-cocycles on triangular matrices

From (11), we have

\[e_{ij} \Delta(e_{jj}) e_{jl} = - e_{ij} \alpha(e_{jj}, e_{jl}) e_{jl} = - e_{ij} \alpha(e_{jj}, e_{jl}), \]

and since \(\alpha(e_{ii}, e_{ij}) e_{jl} = e_{ii} \alpha(e_{jj}, e_{jl}) - \alpha(e_{ij}, e_{jl}) + \alpha(e_{ii}, e_{il}), \) (18) becomes

\[
\Delta(e_{ii}) e_{il} + e_{ii} \Delta(e_{ij}) e_{jl} + e_{ij} \Delta(e_{ji}) e_{jl} + e_{ii} \alpha(e_{ij}, e_{jl}) \\
= \varphi(e_{il}) - e_{ii} \Delta(e_{il}) + e_{ii} \Delta(e_{ij}) e_{jl} + e_{ij} \Delta(e_{ji}) e_{jl} + e_{ii} \alpha(e_{ij}, e_{jl}) \\
= \varphi(e_{il}) - e_{ii} \Delta(e_{il}) - e_{ii} \Delta(e_{ij}) e_{jl} - e_{ij} \Delta(e_{ji}) - \alpha(e_{ij}, e_{jl}) \\
= \varphi(e_{il}) - e_{ii} \Delta(e_{il}) e_{ij} + e_{ij} \Delta(e_{ji}) + \alpha(e_{ij}, e_{jl}) \\
= \varphi(e_{il}) - e_{ii} \Delta(e_{jl}) e_{ij} - e_{ii} \alpha(e_{ij}, e_{jl}),
\]

where the third equality results from the fact that \(\Delta(e_{il}) = \Delta(e_{ij}) e_{jl} + \Delta(e_{jl}) e_{ij} + \alpha(e_{ij}, e_{jl}) + \alpha(e_{ij}, e_{jl}). \) By (13) we have \(\Delta(e_{ii}) e_{il} + e_{ii} \Delta(e_{il}) + \alpha(e_{ii}, e_{il}) = 0. \) Multiplying \(e_{ij} \) from the right yields \(e_{ii} \Delta(e_{il}) e_{ij} = - \alpha(e_{ii}, e_{il}) e_{ij} = - e_{ii} \alpha(e_{jl}, e_{ij}), \) whence (19) equals \(\varphi(e_{il}). \)

Next we assume that \(i = j < l, \) then \(\varphi(e_{ii}) e_{il} = \varphi(e_{il}) \) and

\[
\varphi(e_{ij}) e_{jj} + e_{ij} \varphi(e_{jj}) + \alpha(e_{ij}, e_{jj}) \\
= \Delta(e_{ij}) e_{jj} + e_{ij} \Delta(e_{jj}) e_{jl} + e_{ij} \Delta(e_{jj}) + \alpha(e_{ij}, e_{jj}) \\
= \varphi(e_{il}) - e_{ii} \Delta(e_{il}) e_{ij} + e_{ij} \Delta(e_{ji}) + \alpha(e_{ij}, e_{jl}) \\
= \varphi(e_{il}) - e_{ii} \alpha(e_{ij}, e_{il}) e_{ij} - e_{ii} \alpha(e_{ij}, e_{il}),
\]

since \(e_{ii} \Delta(e_{ii}) e_{il} = - e_{ii} \alpha(e_{ii}, e_{il}) e_{il} = - e_{ii} \alpha(e_{ii}, e_{il}). \) Now, let \(i < j = l. \) We have \(\varphi(e_{ij}) e_{jj} = \varphi(e_{ij}) \) and

\[
\varphi(e_{ij}) e_{jj} + e_{ij} \varphi(e_{jj}) + \alpha(e_{ij}, e_{jj}) \\
= \Delta(e_{ij}) e_{jj} + e_{ij} \Delta(e_{jj}) e_{jl} + e_{ij} \Delta(e_{jj}) + \alpha(e_{ij}, e_{jj}) \\
= \Delta(e_{ij}) e_{jj} + e_{ij} \Delta(e_{jj}) e_{jl} + e_{ij} \Delta(e_{jj}) + \alpha(e_{ij}, e_{jj}) \\
= \Delta(e_{ij}) e_{jj} + e_{ij} \Delta(e_{jj}) e_{jl} + e_{ij} \Delta(e_{jj}) + \alpha(e_{ij}, e_{jj}),
\]

where the last equality is due to \(\alpha(e_{ii}, e_{ij}) e_{jj} = e_{ii} \alpha(e_{ij}, e_{jj}) - \alpha(e_{ij}, e_{jj}) + \alpha(e_{ii}, e_{jj}). \) According to (14), (20) equals

\[
\varphi(e_{ij}) - e_{ii} \Delta(e_{ij}) e_{jj} + e_{ij} \Delta(e_{jj}) + \alpha(e_{ij}, e_{jj}) \\
= \varphi(e_{ij}) - e_{ii} \Delta(e_{ij}) e_{jj} - e_{ij} \Delta(e_{jj}) - \alpha(e_{ij}, e_{jj}) \\
= \varphi(e_{ij}) - e_{ii} \Delta(e_{jj}) e_{ij} + e_{ij} \Delta(e_{jj}) + \alpha(e_{jj}, e_{ij}) \\
= \varphi(e_{ij}) - e_{ii} \Delta(e_{jj}) e_{ij} - e_{ii} \alpha(e_{jj}, e_{ij}).
\]

From (13), we have \(\Delta(e_{ii}) e_{jj} + e_{ii} \Delta(e_{ij}) + \alpha(e_{ii}, e_{ij}) = 0. \) Multiplying \(e_{ij} \) from the right gives

\(e_{ii} \Delta(e_{jj}) e_{ij} = - \alpha(e_{ii}, e_{jj}) e_{ij} = - e_{ii} \alpha(e_{jj}, e_{ij}), \) whence (21) equals \(\varphi(e_{ij}). \) Finally, if \(i = j = l, \)
then (15) follows from (10) and \(\varphi(e_{ii}) = \Delta(e_{ii}) \). Therefore, (15) holds true in every case and the proof is completed. □

Now set \(\delta = \Delta - \varphi \). Then \(\delta(e_{ij}) = \Delta(e_{ij})e_{ii} + e_{ij}\Delta(e_{ii}) + \alpha(e_{ij}, e_{ii}) \) for all \(1 \leq i < j \leq n \) and \(\delta(D_n(\mathcal{R})) = 0 \). Since
\[
\delta(e_{ij}e_{kl} + e_{kl}e_{ij}) = \Delta(e_{ij}e_{kl} + e_{kl}e_{ij}) - \varphi(e_{ij}e_{kl} + e_{kl}e_{ij})
= \Delta(e_{ij})e_{kl} + e_{ij}\Delta(e_{kl}) + \Delta(e_{kl})e_{ij} + e_{kl}\Delta(e_{ij}) + \alpha(e_{ij}, e_{kl}) + \alpha(e_{kl}, e_{ij}) - \\
[\varphi(e_{ij})e_{kl} + e_{ij}\varphi(e_{kl}) + \varphi(e_{kl})e_{ij} + e_{kl}\varphi(e_{ij}) + \alpha(e_{ij}, e_{kl}) + \alpha(e_{kl}, e_{ij})]
= \delta(e_{ij})e_{kl} + e_{ij}\delta(e_{kl}) + \delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}),
\]
we have that \(\delta \) is a Jordan derivation. Moreover, we have

Lemma 2.3 \(\delta \) is an antiderivation.

Proof Since \(\delta = \Delta - \varphi \), \(\varphi \) is a generalized derivation and \(\delta(D_n(\mathcal{R})) = 0 \), it follows that
\[
\delta(e_{ij}) = \Delta(e_{ij})e_{ii} + e_{ij}\Delta(e_{ii}) + \alpha(e_{ij}, e_{ii})
= [\delta(e_{ij}) + \varphi(e_{ij})]e_{ii} + e_{ij}[\delta(e_{ii}) + \varphi(e_{ii})] + \alpha(e_{ij}, e_{ii})
= \delta(e_{ij})e_{ii} + \varphi(e_{ij})e_{ii} + e_{ij}\varphi(e_{ii}) + \alpha(e_{ij}, e_{ii})
= \delta(e_{ij})e_{ii} + \varphi(e_{ij}e_{ii}) = \delta(e_{ij})e_{ii}
\]
if \(i < j \). Note that \(\delta \) is a Jordan derivation, we then have
\[
\delta(e_{ij}) = \delta(e_{ij}e_{jj} + e_{jj}e_{ij}) = \delta(e_{ij})e_{jj} + e_{ij}\delta(e_{jj}) + \delta(e_{jj})e_{ij} + e_{jj}\delta(e_{ij})
= e_{jj}\delta(e_{ij})
\]
when \(i < j \). We proved that
\[
\delta(e_{ij}) = \delta(e_{ij})e_{ii} \quad \text{and} \quad \delta(e_{ij}) = e_{jj}\delta(e_{ij}) \tag{22}
\]
whenever \(i < j \). Our goal is to prove that
\[
\delta(e_{ij}e_{kl}) = \delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}) \tag{23}
\]
for all \(i \leq j \) and \(k \leq l \). Again we consider two cases.

Case 1 \(j \neq k \). We have to show that \(\delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}) = 0 \).

If \(i = k \) and \(j = l \), this holds true since \(\delta \) is a Jordan derivation.

If \(i \neq k \) and \(j \neq l \), it follows from (22) that \(\delta(e_{kl})e_{ij} + e_{kl}\delta(e_{ij}) = \delta(e_{kl})e_{kk}e_{ij} + e_{kl}e_{jj}\delta(e_{ij}) = 0 \).

Next assume that \(i = k \) and \(j \neq l \). If \(i = l \), then from (22) we have \(\delta(e_{ii})e_{ij} + e_{ii}\delta(e_{ij}) = 0 \), since \(\delta \) vanishes on diagonal elements. If \(i \neq l \), then from the fact that \(\delta \) is a Jordan derivation we infer that
\[
0 = \delta(e_{ii}e_{ij} + e_{ij}e_{ii})e_{jj} = \delta(e_{ii})e_{ij} + e_{ii}\delta(e_{ij})e_{jj} + \delta(e_{ij})e_{ii}e_{jj} + e_{ij}\delta(e_{ii})e_{jj} = \delta(e_{ii})e_{ij} + e_{ii}\delta(e_{ij}).
\]
In the case \(i \neq k \) and \(j = l \) we proceed similarly as above. Now we have
\[
\delta(e_{kj})e_{ij} + e_{kj}\delta(e_{ij}) = e_{kj}\delta(e_{ij}) = e_{kk}\delta(e_{kj}e_{ij}) = e_{kk}\delta(e_{kj}e_{ij}) = 0.
\]

Case 2 \(j = k \). The case when \(i = j = l \) is trivial, since \(\delta \) vanishes on diagonal elements.
In cases $i < j = l$ or $i = j < l$, it follows from (22) that
\[
\delta(e_{ij}) = \delta(e_{ij})e_{ij} + e_{ji}\delta(e_{ij}), \quad \delta(e_{il}) = \delta(e_{il})e_{ii} + e_{il}\delta(e_{ii}).
\]

Finally, let $i < j < l$. Then we have\[
\delta(e_{ij})e_{ij} + e_{ji}\delta(e_{ij}) = \delta(e_{jl})e_{jj} + e_{jj}\delta(e_{ji}) = 0,
\]
while\[
\delta(e_{il}) = \delta(e_{il})e_{ii} + e_{il}\delta(e_{ii})
\]
whence (23) holds. This completes the proof. □

Theorem 2.4 Let (Δ, α) be a generalized Jordan derivation associate with Hochschild 2-cocycle α from $T_n(\mathcal{R})$ to a $T_n(\mathcal{R})$-bimodule \mathcal{M}. Then there exists a generalized derivation (φ, α), associate with the same Hochschild 2-cocycle α, and an antiderivation δ from $T_n(\mathcal{R})$ to \mathcal{M} with $\delta(D_n(\mathcal{R})) = 0$ such that $\Delta = \delta + \varphi$. Moreover, (φ, α) and δ are uniquely determined.

Proof It suffices to prove the uniqueness. Suppose $\Delta = \delta_1 + \varphi_1 = \delta_2 + \varphi_2$, where φ_1 and φ_2 are generalized derivations associate with α, while δ_1 and δ_2 are antiderivations vanishing on diagonals. Then $d = \delta_1 - \delta_2 = \varphi_2 - \varphi_1$ is a derivation and an antiderivation as well. Therefore, d vanishes on commutators, which implies $d(e_{ij}) = d(e_{ij}e_{jj} - e_{jj}e_{ij}) = 0$ for all $i < j$. On the other hand, $d(D_n(\mathcal{R})) = \delta_1(D_n(\mathcal{R})) = \delta_2(D_n(\mathcal{R})) = 0$. It follows that $d(T_n(\mathcal{R})) = 0$ and this completes the proof. □

Let $m \geq n \geq 2$. We may regard $\mathcal{M}_m(\mathcal{R})$ as a $T_n(\mathcal{R})$-bimodule by the actions $AX = (A \oplus I_{m-n})X$, $XA = X(A \oplus I_{m-n})$, for all $A \in T_n(\mathcal{R})$ and $X \in \mathcal{M}_m(\mathcal{R})$, where I_{m-n} is the identity of $\mathcal{M}_{m-n}(\mathcal{R})$. As a corollary to Theorem 2.4, we shall easily derive

Corollary 2.5 Let $m \geq n \geq 2$. Then a generalized Jordan derivation from $T_n(\mathcal{R})$ to $\mathcal{M}_m(\mathcal{R})$ is a generalized derivation.

In the case $\alpha = 0$, we have

Corollary 2.6 ([7]) Let $m \geq n \geq 2$. There are no proper Jordan derivations from $T_n(\mathcal{R})$ to $\mathcal{M}_m(\mathcal{R})$. In particular, there are no proper Jordan derivations from $T_n(\mathcal{R})$ to itself.

References

