Expansion Formulas for Orthogonal Projectors onto Ranges of Row Block Matrices

Yongge TIAN1,\ast, Yufu WANG2

1. China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081, P. R. China;
2. Zhengzhou Technical School for Surveying and Mapping, Henan 450052, P. R. China

Abstract We give in this note some expansion formulas for the orthogonal projectors onto the range of the row block matrix $[A, B]$, and use the expansion formulas to examine relations among the orthogonal projectors onto the ranges of A, B and $[A, B]$. In particular, we present some identifying conditions for a pair of orthogonal projectors of the same size to commute.

Keywords Moore-Penrose inverse; orthogonal projector; equality; inequality; rank formula.

MR(2010) Subject Classification 15A03; 15A09; 15A27

1. Introduction

Throughout this note, $\mathbb{C}^{m \times n}$ denotes the set of all $m \times n$ complex matrices; A^*, $r(A)$ and $R(A)$ stand for the conjugate transpose, rank, range (column space) of a matrix $A \in \mathbb{C}^{m \times n}$, respectively; $[A, B]$ denotes a row block matrix consisting of A and B. We write $A > 0$ ($A \geq 0$) if A is Hermitian positive definite (positive semi-definite). Two Hermitian matrices A and B of the same size are said to satisfy the inequality $A > B$ ($A \geq B$) in the Löwner partial ordering if $A - B$ is positive definite (positive semi-definite). The inertia of Hermitian matrix A is defined to be the triplet $\text{In}(A) = \{i_+ (A), i_- (A), i_0 (A)\}$, where $i_+ (A)$, $i_- (A)$ and $i_0 (A)$ are the numbers of the positive, negative and zero eigenvalues of A counted with multiplicities, respectively, and $s(A) = i_+ (A) - i_- (A)$.

The Moore-Penrose inverse of $A \in \mathbb{C}^{m \times n}$, denoted by A^\dagger, is defined to be the unique matrix $X \in \mathbb{C}^{m \times n}$ satisfying the four matrix equations

A matrix X is called a generalized inverse of A, denoted by $X = A^\ast$, if it satisfies (i); the collection of all generalized inverses of A is denoted by $\{A^\ast\}$.

A matrix $A \in \mathbb{C}^{m \times m}$ is called an orthogonal projector if it is both idempotent and Hermitian, i.e., $A^2 = A = A^\ast$. A matrix $X \in \mathbb{C}^{m \times m}$ is called the orthogonal projector onto the range $R(A)$ of $A \in \mathbb{C}^{m \times n}$, denoted by $X = P_A$, if it satisfies

$R(X) = R(A)$ and $X^2 = X = X^\ast$.
It can be seen from the definition of the Moore-Penrose inverse that the product AA^\dagger is the orthogonal projector onto $\mathcal{R}(A)$, i.e., $P_A = AA^\dagger$; while $P_A^\perp = I_m - AA^\dagger$ is the orthogonal projector onto the null space of A^*. Orthogonal projectors are fundamental objects of study in matrix theory, which play important roles in the study of matrix factorizations of Hermitian matrices and matrix computations. Various expressions or equalities consisting of orthogonal projectors may occur in matrix theory and applications. In particular, much attention was paid to orthogonal projectors onto the ranges of row block matrices and their submatrices [1, 3]. The purpose of this note is to revisit the orthogonal projectors onto the ranges of the row block matrix $[A, B]$ and its two submatrices A and B. We shall give some new expansion formulas for the orthogonal projectors onto the ranges of the row block matrix $[A, B]$ and use the expansion formulas to examine the relations among the orthogonal projectors onto the ranges of A, B and $[A, B]$. In particular, we give some identifying conditions for a pair of orthogonal projectors of the same size to commute.

The following are some known results on ranks of matrices, which will be used in the latter part of this paper.

Lemma 1.1 ([2]) Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times k}$, $C \in \mathbb{C}^{l \times n}$ and $D \in \mathbb{C}^{l \times k}$. Then, the following rank formulas hold

$$r[A, B] = r(A) + r[(I_m - AA^\dagger)B] = r(B) + r[(I_m - BB^\dagger)A], \quad (1.1)$$

$$r \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} = r(B) + r(C) + r[(I_m - BB^\dagger)A(I_n - C^\dagger C)], \quad (1.2)$$

$$r \begin{bmatrix} A & B \\ C & D \end{bmatrix} = r(A) + r(D - CA^\dagger B), \quad \text{if} \quad \mathcal{R}(B) \subseteq \mathcal{R}(A) \quad \text{and} \quad \mathcal{R}(C^\dagger) \subseteq \mathcal{R}(A^*). \quad (1.3)$$

Lemma 1.2 Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times k}$ and $C \in \mathbb{C}^{l \times m}$. Then, the following rank formula holds

$$r \begin{bmatrix} AA^\dagger & B \\ C & 0 \end{bmatrix} = r \begin{bmatrix} CB & 0 & C \\ 0 & 0 & A^* \\ B & A & 0 \end{bmatrix} - r(A). \quad (1.4)$$

Proof Applying (1.3) and $AA^\dagger = A(A^*A)^\dagger A^*$ to the left-hand side of (1.4), and simplifying by elementary matrix operations, we obtain

$$r \begin{bmatrix} AA^\dagger & B \\ C & 0 \end{bmatrix} = r \begin{bmatrix} -A^*A & A^* & 0 \\ A & 0 & B \\ 0 & C & 0 \end{bmatrix} - r(A) = r \begin{bmatrix} 0 & A^* & A^*B \\ A & 0 & B \\ 0 & C & 0 \end{bmatrix} - r(A)$$

$$= r \begin{bmatrix} 0 & A^* & 0 \\ A & 0 & B \\ 0 & C & -CB \end{bmatrix} - r(A) = r \begin{bmatrix} CB & 0 & C \\ 0 & 0 & A^* \\ B & A & 0 \end{bmatrix} - r(A),$$

establishing (1.4). \Box
Lemma 1.3 ([11]) Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{m \times k}$. Then, the following rank formulas hold
\begin{align}
r(P_A - P_B) &= 2r[A, B] - r(A) - r(B), \quad (1.5) \\
r(P_AP_B - P_BP_A) &= 2r[A, B] - 2r(A) - 2r(B) + 2r(A^*B). \quad (1.6)
\end{align}

Lemma 1.4 ([9]) Let $P, P_1, P_2 \in \mathbb{C}^{m \times m}$ be three orthogonal projectors and assume that
\begin{align}
\mathcal{R}(P_1) \subseteq \mathcal{R}(P) \quad \text{and} \quad \mathcal{R}(P_2) \subseteq \mathcal{R}(P). \quad (1.7)
\end{align}
Then, the following hold.
(a) $P - P_1 - P_2$ satisfies the following equalities
\begin{align}
i_+(P - P_1 - P_2) &= r(P) - r(P_1) - r(P_2) + r(P_1P_2), \quad (1.8) \\
i_-(P - P_1 - P_2) &= r(P_1P_2), \quad (1.9) \\
r(P - P_1 - P_2) &= r(P) - r(P_1) - r(P_2) + 2r(P_1P_2), \quad (1.10) \\
s(P - P_1 - P_2) &= r(P) - r(P_1) - r(P_2). \quad (1.11)
\end{align}
Hence, the following hold.
(i) $P - P_1 - P_2$ is nonsingular if and only if $r(P) = r(P_1) + r(P_2) - 2r(P_1P_2) + m$.
(ii) $P - P_1 - P_2 \geq 0$ if and only if $P_1P_2 = 0$.
(iii) $P - P_1 - P_2 \leq 0$ if and only if $r(P) = r(P_1) + r(P_2) - r(P_1P_2)$.
(iv) $P = P_1 + P_2$ if and only if $P_1P_2 = 0$ and $r(P) = r(P_1) + r(P_2)$.
(v) The signature of $P - P_1 - P_2$ is zero if and only if $r(P) = r(P_1) + r(P_2)$.
(b) $2P - P_1 - P_2$ satisfies the following equalities
\begin{align}
i_+(2P - P_1 - P_2) &= r(2P - P_1 - P_2) = r(P) - r(P_1) - r(P_2) + r(P_1P_2), \quad (1.12)
\end{align}
Hence, $2P = P_1 + P_2$ if and only if $r(P) = r(P_1) + r(P_2) - r[P_1, P_2]$.

Lemma 1.5 ([5, 10]) Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times k}$ and $C \in \mathbb{C}^{l \times n}$ be given. Then the minimal rank of $A - BXC$ with respect to $X \in \mathbb{C}^{k \times l}$ is given by the following closed-form formula
\begin{align}
\min_{X \in \mathbb{C}^{k \times l}} r(A - BXC) = r[A, B] + r \begin{bmatrix} A \\ C \end{bmatrix} - r \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}. \quad (1.13)
\end{align}
The matrix X satisfying (1.13) was also given in [5, 10].

2. Main results
We first show a group of results on the Moore-Penrose inverse of product of two orthogonal projectors.

Lemma 2.1 Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{m \times k}$. Then,
(a) The following expansion formulas hold:
\begin{align}
(P_AP_B)^\dagger &= P_BP_A - P_BP_A^\perp P_A, \quad (2.1) \\
(P_BP_A)(P_A^\dagger P_BP_A) &= P_AP_BP_A - P_B^\perp P_A, \quad (2.2)
\end{align}
(PA^P_B)\dagger (PA^P_B) = PBPA^P_B - PB(P_B^P A)^\dagger PA^P_B.

(2.3)

(b) The following inequalities hold:

\[(PA^P_B)(PA^P_B)\dagger \geq PA^P_BPA, \]

\[(PA^P_B)\dagger (PA^P_B) \geq PBPA^P_B. \]

(2.4)

(2.5)

(c) The following rank expansion formulas hold:

\[r[(PA^P_B)\dagger - PBPA] = r[A, B] - r(A) - r(B) + r(A^\dagger B), \]

\[r[(PA^P_B)(PA^P_B)\dagger - PA^P_BPA] = r[A, B] - r(A) - r(B) + r(A^\dagger B), \]

\[r[(PA^P_B)\dagger (PA^P_B) - PBPA^P_B] = r[A, B] - r(A) - r(B) + r(A^\dagger B). \]

(2.6)

(2.7)

(2.8)

Proof Eq. (2.1) was shown in [7, 8]. Pre- and post-multiplying PA^P_B yield (2.2) and (2.3), respectively. Recall that $PA^P_BPA \geq 0$ and $I_m - PA^P_BPA \geq 0$. Then, we have

\[(PA^P_B)(PA^P_B)\dagger - PA^P_BPA = (PA^P_B)(PA^P_B)\dagger (I_m - PA^P_BPA)(PA^P_B)(PA^P_B)\dagger \geq 0, \]

\[(PA^P_B)\dagger (PA^P_B) - PBPA^P_B = (PA^P_B)\dagger (PA^P_B)(I_m - PBPA^P_B)(PA^P_B)\dagger (PA^P_B) \geq 0, \]

establishing (2.4) and (2.5). Eq. (2.6) was shown in [8], while (2.7) and (2.8) follow from (2.6). □

Let $M = [A, B]$, $A_1 = P_B^\dagger PA$ and $B_1 = P_A^\perp PB$. Then,

\[M \begin{bmatrix} I_n & -A^\dagger PB \\ 0 & B^\dagger \end{bmatrix} = [A, B_1], \quad M \begin{bmatrix} A^\dagger & 0 \\ -B^\dagger PA & I_k \end{bmatrix} = [A_1, B]. \]

Also note from (1.1) that $r(M) = r(A) + r(B) = r(A_1) + r(B)$. In consequence,

\[\mathcal{R}(M) = \mathcal{R}[A, B_1] = \mathcal{R}[P_A, P_B_1] = \mathcal{R}(P_A + P_B_1), \]

\[\mathcal{R}(M) = \mathcal{R}[A_1, B] = \mathcal{R}[P_A_1, P_B] = \mathcal{R}(P_A_1 + P_B). \]

Also note that both $PA^P_BPA_1 = PBPA_1 = 0$. So that

\[(PA_1 + P_B)^2 = PA + P_B, \quad (PB + PA_1)^2 = PB + PA_1. \]

Thus, both $PA + P_B$ and $PA_1 + P_B$ are orthogonal projectors, and P_M can be decomposed as

\[P_M = PA + P_B = PA + B_1B_1^\dagger, \]

\[P_M = PA_1 + P_B = PA_1 + A_1A_1^\dagger, \]

which were due to Rao and Yanai [4], see also [3]. Two further expansion formulas derived from (2.13) and (2.14) for P_M are given below.

Theorem 2.2 Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times k}$, and define $M = [A, B]$, $A_1 = P_B^\perp PA$ and $B_1 = P_A^\perp PB$. Then, the following hold.

(a) P_M can be decomposed as

\[P_M = PA + B_1B_1^\dagger - B_1A_1^\dagger P_A^\perp, \]

\[P_M = PB + A_1A_1^\dagger - A_1B_1^\dagger P_B^\perp. \]

(2.16)

(2.17)
(b) \(P_M \) satisfies the following inequalities
\[
P_M \geq P_A + B_1 B_1^\perp = P_A + P_B - P_A P_B - P_B P_A + P_A P_B P_A, \tag{2.18}
\]
\[
P_M \geq P_B + A_1 A_1^\perp = P_A + P_B - P_A P_B - P_B P_A + P_B P_A P_B. \tag{2.19}
\]

(c) \(P_M \) satisfies the following rank and inertia equalities
\[
r(P_M - P_A - B_1 B_1^\perp) = r(M) - r(A) - r(B) + r(A^* B), \tag{2.20}
\]
\[
r(P_M - P_B - A_1 A_1^\perp) = r(M) - r(A) - r(B) + r(A^* B), \tag{2.21}
\]
\[
r(P_M - P_A - P_B + P_A P_B) = r(M) - r(A) - r(B) + r(A^* B), \tag{2.22}
\]
\[
\left(i_- (P_M - P_A - P_B) = i_- (P_A - P_A) = i_- (P_B - P_B) \right)
\]
\[
= r(M) - r(A) - r(B) + r(A^* B). \tag{2.23}
\]

(d) The following formulas for minimum matrix rank optimization hold
\[
\min_{X \in \mathbb{C}^{n \times m}} r \left(M - M \begin{bmatrix} X \\ B_1 \end{bmatrix} M \right) = \min_{Y \in \mathbb{C}^{k \times m}} r \left(M - M \begin{bmatrix} A_1^* \\ Y \end{bmatrix} M \right)
\]
\[
= r(M) - r(A) - r(B) + r(A^* B). \tag{2.24}
\]

(e) The following statements are equivalent:
(i) \(P_A P_B = P_B P_A \).
(ii) \((P_A P_B)^\dagger = P_B P_A \).
(iii) \((P_A P_B)(P_A P_B)^\dagger = P_A P_B P_A \).
(iv) \((P_A P_B)^\dagger (P_A P_B) = P_B P_A P_B \).
(v) \(P_M = P_A + B_1 B_1^\perp \).
(vi) \(P_M = P_B + A_1 A_1^\perp \).
(vii) \(P_M \supseteq P_A \supseteq P_B \).
(viii) \(P_A \supseteq P_B \).
(ix) \(P_B \supseteq P_A \).
(x) \(P_M = P_A + P_B - P_A P_B \).

(xi) There exists an \(X \in \mathbb{C}^{n \times m} \) such that \(\begin{bmatrix} X \\ B_1 \end{bmatrix} \in \{ [A, B]^\perp \} \).

(xii) There exists a \(Y \in \mathbb{C}^{k \times m} \) such that \(\begin{bmatrix} A_1^* \\ Y \end{bmatrix} \in \{ [A, B]^\perp \} \).

(xiii) \(r(M) = r(A) + r(B) - r(A^* B) \).

Proof Applying (2.1)–(2.5) to \(A_1 = P_B^\perp P_A \) and \(B_1 = P_A^\perp P_B \) gives
\[
A_1^\perp = P_A P_B^\perp - P_A (P_A^\perp P_B)^\perp P_B^\perp = A_1^\perp = P_A B_1^\perp P_B^\perp,
\]
\[
B_1^\perp = P_B P_A^\perp - P_B (P_B^\perp P_A)^\perp P_A^\perp = A_1^\perp = P_B A_1^\perp P_A^\perp,
\]
\[
A_1 A_1^\perp = A_1 A_1^\perp - A_1 B_1^\perp P_B^\perp,
\]
\[
B_1 B_1^\perp = B_1 B_1^\perp - B_1 A_1^\perp P_A^\perp,
\]
\[
A_1 A_1^\perp \geq A_1 A_1^\perp.
\]
Substituting them into (2.14) and (2.15) gives

\[
P_M = P_A + P_A = P_A + B_1B_1^* - B_1A_1^*P_A^*,
\]
\[
P_M = P_B + P_A = P_B + A_1A_1^* - A_1B_1^*P_B^*,
\]
\[
P_M = P_A + P_B = P_A + B_1B_1^*,
\]
\[
P_M = P_B + P_A = P_B + A_1A_1^*,
\]

as required for (2.16)–(2.19). It is also easy to verify that

\[
P_M - P_A - B_1B_1^* = P_M - P_A - P_A^*P_BP_A^* = P_A^*(P_M - P_B)P_A^*,
\]
\[
P_M - P_A - P_B + P_AP_B = P_A^*(P_M - P_B),
\]

where \(P_M - P_B > 0\). Hence, applying (1.1) to (2.25) and simplifying, we obtain

\[
r(P_M - P_A - B_1B_1^*) = r(P_M - P_A - P_B + P_AP_B)
\]
\[
= r[P_A^*(P_M - P_B)] = r[P_A^*P_A] - r(P_A)
\]
\[
= r(P_A^*P_A) - r(P_A) = r(P_BP_A) + r(P_A^*P_A) - r(P_A)
\]
\[
= r(M) - r(A) - r(B) + r(A^*B),
\]

as required for (2.20) and (2.22). Eq. (2.21) can be shown similarly. Eq. (2.22) was also shown in [6]. Eq. (2.23) was shown in [9].

Applying (1.13) and simplifying by (1.1) and elementary matrix operations, we obtain

\[
\min_Y r(M - M[A^*Y]) = \min_Y r([0, P_A^*B] - BYM)
\]
\[
\]
\[
= r(A^*B) + r(P_AB) - r(B)
\]

establishing the second equality in (2.24). The first equality in (2.24) can be shown similarly. Setting the right-hand sides of (1.6), (2.6)–(2.8), (2.20)–(2.24) equal to zero leads to the equivalences in (e). □

It is of interest to consider extensions of the previous results to some general row block matrices. A special case for the orthogonal projectors onto the ranges of a row block matrix \([A, B, C]\) is formulated below.

Theorem 2.3 Let \(N = [A, B, C]\), where \(A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{m \times k}, C \in \mathbb{C}^{m \times l}\). Then,
(a) The following rank equality holds
\[r(P_N - P_A - P_B - P_C + P_A P_B + P_A P_C + P_B P_C - P_A P_B P_C) \]
\[= r \begin{bmatrix} A^* C & A^* B \\ B^* C & 0 \end{bmatrix} + r[A, B, C] - r(A) - r(B) - r(C). \] (2.28)

(b) The following statements are equivalent:
(i) \(P_N = P_A + P_B + P_C - P_A P_B - P_A P_C - P_B P_C + P_A P_B P_C \).
(ii) \((I_m - P_A)(P_N - P_B)(I_m - P_C) = 0. \)
(iii) \((P_N - P_A)(P_N - P_B)(P_N - P_C) = 0. \)
(iv) \(r \begin{bmatrix} A^* C & A^* B \\ B^* C & 0 \end{bmatrix} = r(A) + r(B) + r(C) - r(N). \)

(c) (see [4]) If \(P_A P_B = P_B P_A, P_A P_C = P_C P_A \) and \(P_B P_C = P_C P_B \), then (i) of (b) holds.

Proof Note that \(P_N P_A = P_A, P_N P_B = P_B \) and \(P_N P_C = P_C \) hold. Then it is easy to verify
\[P_N - P_A - P_B - P_C + P_A P_B + P_A P_C + P_B P_C - P_A P_B P_C \]
\[= (I_m - P_A)(P_N - P_B)(I_m - P_C). \] (2.29)
It follows from (2.12) that \(P_N \) can be decomposed as
\[P_N = P_B + (P_B^+ [A, C])(P_B^+ [A, C])^\dagger. \] (2.30)
Applying (1.2) to (2.29) and simplifying by (1.1), (1.4), (2.30) and elementary matrix operations, we obtain
\[r[(I_m - P_A)(P_N - P_B)(I_m - P_C)] \]
\[= r \begin{bmatrix} P_N - P_B & P_A \\ P_C & 0 \end{bmatrix} - r(P_A) - r(P_C) \]
\[= r \begin{bmatrix} (P_B^+ [A, C])(P_B^+ [A, C])^\dagger & P_A \\ P_C & 0 \end{bmatrix} - r(A) - r(C) \]
\[= r \begin{bmatrix} P_C P_A & 0 \\ 0 & P_C \end{bmatrix} - r(P_B^+ [A, C]) - r(A) - r(C) \]
\[= r \begin{bmatrix} P_C P_A & 0 \\ 0 & (P_B^+ [A, C])^* \end{bmatrix} - r(P_B^+ [A, C]) - r(A) - r(C) \]
\[= r \begin{bmatrix} P_B P_A & P_C P_B \\ 0 & 0 \end{bmatrix} - r(P_B^+ [A, C]) - r(A) - r(C) \]
\[= r \begin{bmatrix} P_B P_A & P_C P_B \\ 0 & (P_B^+ [A, C])^* \end{bmatrix} - r(P_B^+ [A, C]) - r(A) - r(C) \]
\[= r \begin{bmatrix} A^* C & A^* B \\ B^* C & 0 \end{bmatrix} + r[A, B, C] - r(A) - r(B) - r(C), \]
establishing (2.28). Setting both hands of (2.28) equal to zero leads to the equivalence of (i), (ii)
and (iv) in (b). It is also easy to verify that
\[
P_N - P_A - P_B - P_C + P_A P_B + P_B P_C + P_A P_B P_C = (P_N - P_A)(P_N - P_B)(P_N - P_C).
\]

Setting both hands of (2.28) equal to zero leads to the equivalence of (i) and (iii) in (b).

Under \(P_A P_B = P_B P_A, \ P_A P_C = P_C P_A, \) and \(P_B P_C = P_C P_B \), both \(P_M = P_A + P_B - P_A P_B \)
and \(P_M P_C = P_C P_M \) hold by Theorem 2.2(e), where \(M = [A, B] \). In this case, \(P_N = P_M + P_C - P_M P_C \) by Theorem 2.2(d). Substituting \(P_M = P_A + P_B - P_A P_B \) into \(P_N = P_M + P_C - P_M P_C \) yields (i) of (b). \(\square \)

Many matrix expressions consisting of the orthogonal projectors onto the range of \(N = [A, B, C] \), \(A, B \) and \(C \) can be constructed, for instance,
\[
P_{[A, B, C]} = P_A - P_B - P_C, \quad P_{[A, B, C]} - P_{A_1} - P_{B_1} - P_{C_1},
\]
where \(A_1 = P_{[B, C]} \) \(P_A, \ B_1 = P_{[A, C]} \) \(P_B \) and \(C_1 = P_{[A, B]} \) \(P_C \). Thus, it is an attractive topic
to extend the previous results to the orthogonal projectors onto the range of a general row
block matrix \([A_1, \ldots, A_k] \). In particular, it can also be derived from Theorem 2.2(e) that if \(P_{A_i} P_{A_j} = P_{A_i} P_{A_j} \) for \(i, j = 1, \ldots, s \), then
\[
P_N = P_{A_1} + \cdots + P_{A_s} - P_{A_1} P_{A_2} - \cdots - P_{A_{s-1}} P_{A_s} + P_{A_1} P_{A_2} P_{A_3} + \cdots + P_{A_{s-2}} P_{A_{s-1}} P_{A_s} - \cdots + (-1)^{s-1} P_{A_1} \cdots P_{A_s}.
\]
This result was first shown in Rao and Yanai [4].

References

[7] Yongge TIAN. The equivalence between \((AB)^\dagger = B^\dagger A^\dagger \) and other mixed-type reverse-order laws. Internat.
855–870.
[9] Yongge TIAN. Expansion formulas for the inertias of Hermitian matrix polynomials and matrix pencils of