On the Characteristic Polynomial of a Hexagonal System and Its Application

Zhenzhen LOU, Qiongxiang HUANG
College of Mathematics and Systems Science, Xinjiang University, Xinjiang 830046, P. R. China

Abstract. Let \(L_n \) be the hexagonal chain graph, \(F_n \) be the hexacyclic system graph and \(M_n \) be the Möbius hexacyclic system graph. Derflinger and Sofer gave the spectra of \(L_n \) and \(F_n \) by using group theoretical method. Later, Gutman gave the spectra of them using a polynomial result due to Godsil and McKay. In this paper, we give a simple and direct method to determine the characteristic polynomial and spectra of \(F_n \) and \(L_n \). By the method, we give the characteristic polynomial and spectrum of \(M_n \) that is new. Additionally, the exact values of total \(\pi \)-electron energy and the nullities of \(L_n \), \(F_n \) and \(M_n \) are obtained, and the bounds for the energy of \(L_n \) and \(M_n \) are also considered.

Keywords. characteristic polynomial; spectrum; hexagonal system; circulant matrix; energy; nullity.

MR(2010) Subject Classification 05C50; 05C78

1. Introduction

A hexagonal system (benzenoid hydrocarbon) is 2-connected plan graph such that each of its interior face is bonded by a regular hexagon of unit length 1. Hexagonal systems are very important in theoretical chemistry because they are natural graph representations of benzenoid hydrocarbon [3]. Hexagonal chain graph shown in Fig.1 (a) is the graph representations of an important subclass of benzenoid molecules, namely the so-called unbranched catacondensed benzenoids, which play a distinguished role in the theoretical chemistry of benzenoid hydrocarbon. A great deal of mathematical and mathematico-chemical results on hexagonal chains were obtained (see [3–6] for examples). The hexacyclic system graph \(F_n \) is obtained from hexagonal chain \(L_n \) by identifying two pairs of ends of \(L_n \) which is shown in Fig.1 (b). The Möbius hexacyclic system graph \(M_n \) is shown in Fig.1 (c).

It is well-known that the theory of graph spectra is related to the Chemistry through the HMO (Hückel Molecular Orbital) Theory (see [7] for an extensive review on the topic), in which there are two problems to attract our attentions. One is posed by Günthad in [8] that if the (molecular) graph is determined by the spectrum of the corresponding graph. For the researches of the spectral determined problem one can refer to [9, 10].

Received April 22, 2013; Accepted July 9, 2013
Supported by the National Natural Science Foundation of China (Grant No. 11261059).
* Corresponding author
E-mail address: huangqx@xju.edu.cn (Qiongxiang HUANG); xjdxlaz@163.com (Zhenzhen LOU)
To our knowledge, the spectra of hexagonal chain graph L_n and hexacyclic system graph F_n were found in [1, 2]. However, the spectrum of Möbius hexacyclic system graph has not yet been found, to say nothing of the spectra of the general hexagonal graphs.

Another is originated from Hückel theory to determine the energies of (molecular) graph, the so-called total π-electron energy E_π, by spectrum of the corresponding graph. For the researches on the energies of graphs one can refer to [11–15]. From a chemical point of view, it is of great interest to find the accurate values of energy $E_\pi(G) = \sum_{1 \leq i \leq n} |\lambda_i|$ for graph G, where λ_i ($i = 1, 2, \ldots, n$) are the eigenvalues of G. Additionally, L. Collatz and U. Sinogowitz in [16] posed the problem of characterizing all graphs which have zero eigenvalue. As it has been shown in [17], the occurrence of a zero eigenvalue in the spectrum of a bipartite graph (corresponding to an alternant hydrocarbon) indicates chemical instability of the molecule which such a graph represents. Denote by $\eta(G)$ the algebraic multiplicity of eigenvalue 0 in the spectrum of the (bipartite) graph G, which is normally called the nullity of G.

All the above mentioned problems are related to the spectrum of the corresponding molecular graph. Derflinger and Sofer in [1] gave the spectra of L_n and F_n by using group theoretical method. Later, Gutman in [2] gave the spectra of them using a polynomial result due to Godsil and McKay in [21]. In this paper we give the characteristic polynomials and spectra of L_n, F_n and M_n by a direct method and, by the way, the nullities of them are also determined. Furthermore, the accurate values of total π-electron energies of L_n, F_n and M_n are obtained. At last, the bond for the energy of L_n and M_n are also considered.

All graphs considered in this paper are simple, undirected and without loops. Let G be a graph with adjacency matrix $A(G)$, its vertices are labeled by $V(G) = \{1, 2, \ldots, n\}$ and d_i denotes the degree of vertex i. We denote by $\phi_G(\lambda) = |\lambda I_n - A(G)|$ the characteristic polynomial of G, where I_n is the identity matrix of order n. The multiset of eigenvalues of $A(G)$ is called the adjacency spectrum (or simply the spectrum) of G. Denote by $D(G)$ the diagonal matrix $\text{diag}(d_1, \ldots, d_n)$, and $Q(G) = D(G) + A(G)$ the signless Laplacian matrix of G. The characteristic polynomial $Q_G(\lambda) = |\lambda I_n - Q(G)|$ is called the Q-polynomial of G and the multiset of eigenvalues of $Q(G)$ is called the Q-spectrum of G. A circulant matrix is a square matrix in which every
row beginning with the second can be obtained from the preceding row by moving each of its elements one column to the right, with the last element circling to become the first. In this section, we will cite and establish some results for the later use.

Lemma 2.1 Let A be a matrix of size $m \times n$ and A^T be the transpose of A. If $|A^T A| \neq 0$, then the matrix

$$
\Delta = \begin{pmatrix}
0 & I_n & A^T & 0 \\
I_n & 0 & 0 & A^T \\
A & 0 & 0 & 0 \\
0 & A & 0 & 0
\end{pmatrix}
$$

has the characteristic polynomial:

$$
\phi_\Delta(\lambda) = \lambda^{2(m-n)} |(\lambda + 1)I_n - A^T A| \cdot |(\lambda - 1)I_n - A^T A|.
$$

(1)

Proof Suppose $\lambda = 0$. Then

$$
\phi_\Delta(\lambda) = |-(\lambda I - \Delta)| = \begin{vmatrix}
0 & -I_n & -A^T & 0 \\
-I_n & 0 & 0 & -A^T \\
-A & 0 & 0 & 0 \\
0 & -A & 0 & 0
\end{vmatrix} = |A^T A|^2 = 0.
$$

Thus $|A^T A| = 0$, a contradiction. From the above we know that $\lambda \neq 0$. By the property of determinant we have

$$
\phi_\Delta(\lambda) = |\lambda I - \Delta| = \begin{vmatrix}
\lambda I_n & -I_n & -A^T & 0 \\
-I_n & \lambda I_n & 0 & -A^T \\
-A & 0 & \lambda I_m & 0 \\
0 & -A & 0 & \lambda I_m
\end{vmatrix} = \begin{vmatrix}
\lambda I_n - \frac{A^T A}{\lambda} & -I_n & 0 & 0 \\
-I_n & \lambda I_n - \frac{A^T A}{\lambda} & 0 & 0 \\
-A & 0 & \lambda I_m & 0 \\
0 & -A & 0 & \lambda I_m
\end{vmatrix} = \lambda^{2m} \begin{vmatrix}
\lambda I_n - \frac{A^T A}{\lambda} & -I_n \\
-I_n & \lambda I_n - \frac{A^T A}{\lambda}
\end{vmatrix} = \lambda^{2m} \begin{vmatrix}
(\lambda + 1)I_n - \frac{A^T A}{\lambda} & 0 \\
0 & (\lambda - 1)I_n - \frac{A^T A}{\lambda}
\end{vmatrix} = \lambda^{2(m-n)} |(\lambda + 1)I_n - A^T A| \cdot |(\lambda - 1)I_n - A^T A|.
$$

The proof is completed. □

The following five results are familiar to us.

Lemma 2.2 ([18]) The signless Laplacian matrix of a graph G is $Q(G) = D(G) + A(G)$. If M is the incidence matrix of G with n vertices and m edges, then

$$
MM^T = D(G) + A(G) = Q(G).
$$

(2)

Lemma 2.3 ([19]) Let C_n be the cycle on n vertices and P_{n+1} be the path on $n + 1$ vertices respectively. Then the Q-polynomials of C_n and P_{n+1} are

$$
Q_{C_n}(\lambda) = \prod_{j=1}^{n} (\lambda - 2 - 2 \cos \frac{2\pi j}{n}),
$$

(3)
\[
Q_{p_{n+1}}(\lambda) = \prod_{j=1}^{n+1} (\lambda - 2 - 2 \cos \frac{\pi j}{n+1}).
\] (4)

Lemma 2.4 ([20]) If \(A, B\) are two circulant matrices of the same order and \(a\) and \(b\) are any two scalars, then \(aA + bB\) is also a circulant matrix.

Lemma 2.5 ([20]) An \(n \times n\) circulant matrix \(S\) takes the form

\[
S = \begin{pmatrix}
 s_0 & s_1 & \cdots & s_{n-2} & s_{n-1} \\
 s_{n-1} & s_0 & \cdots & s_{n-3} & s_{n-2} \\
 \vdots & s_{n-1} & s_0 & \cdots & \vdots \\
 s_2 & \cdots & \cdots & s_1 \\
 s_1 & s_2 & \cdots & s_{n-1} & s_0
\end{pmatrix}.
\]

Then we have \(S = s_0 W^0 + s_1 W^1 + s_2 W^2 + \cdots + s_{n-1} W^{n-1}\), where \(W\) is the ‘cyclic permutation’ matrix given by

\[
W = \begin{pmatrix}
 0 & 0 & \cdots & 0 & 1 \\
 1 & 0 & \cdots & 0 & 0 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots & 0 \\
 0 & \cdots & 0 & 0 & 1
\end{pmatrix}.
\]

Lemma 2.6 ([20]) Let \(S\) be an \(n \times n\) circulant matrix. Then the eigenvalues of \(S\) are \(\lambda_j = s_0 + s_1 \omega_j + s_2 \omega_j^2 + \cdots + s_{n-1} \omega_j^{n-1}\) where \(j = 0, 1, \ldots, n-1\) and the determinant of \(S\) can be computed as:

\[
\det(S) = \prod_{j=0}^{n-1} (s_0 + s_1 \omega_j + s_2 \omega_j^2 + \cdots + s_{n-1} \omega_j^{n-1}),
\]

where \(\omega_j = e^{\frac{2\pi j}{n}}\) are the \(n\)-th roots of unity and \(i = \sqrt{-1}\) is the imaginary unit.

3. The characteristic polynomial of hexacyclic system graph

Here we use a simple and direct method to give an explicit expression for the characteristic polynomials of hexagonal system graph \(L_n\) and \(F_n\). Now we label \(L_n\) as in Fig.2, and it will be exactly the \(F_n\) if the vertices 1 and \(x_1\) are coincided and simultaneously \(1'\) and \(x_2\) are coincided.

In this section we prefer to consider the characteristic polynomial and spectrum of \(F_n\) in details, and, as the same, that of \(L_n\) follows immediately.

![A prescribed hexagonal system graph L_n or F_n](image)

Figure 2 A prescribed hexagonal system graph \(L_n\) or \(F_n\)

Lemma 3.1 Let \(F_n\) be a hexacyclic system graph with \(n\) hexagons. Then the characteristic
polynomial of F_n is given by

$$
\phi_{F_n}(\lambda) = \prod_{j=1}^{n}(\lambda^2 + \lambda - 2 - 2\cos \frac{2\pi j}{n})(\lambda^2 - \lambda - 2 - 2\cos \frac{2\pi j}{n}).
$$

(6)

Proof We partition the vertex set $V(F_n)$ into four parts: $V(F_n) = X_1 \cup X_2 \cup Y_1 \cup Y_2$, where the vertices are ordered as below (to see Fig.2):

\[
\begin{align*}
X_1 &= \{1, 3, 5, \ldots, 2n - 1\}, \\
X_2 &= \{1', 3', 5', \ldots, (2n - 1)\}', \\
Y_1 &= \{2, 4, 6, \ldots, 2n - 2, 2n\}, \\
Y_2 &= \{2', 4', 6', \ldots, (2n - 2)', (2n)'\},
\end{align*}
\]

where 1 = x_1 and 1' = x_2.

Let $A(F_n)$ be the adjacency matrix of F_n. For $i = 1, 2$, let $A(X_i, Y_i) = (a_{uv})_{n \times n}$ denote the block matrix of $A(F_n)$ corresponding to X_i, the row-set, and Y_i, the column set. To be exact, $a_{uv} = 1$ if $u \in X_i$ is adjacent with $v \in Y_i$ in F_n, and $a_{uv} = 0$ otherwise. Thus, in accordance with the labeling of vertices in Fig.2, we see that

$$
\begin{align*}
A(X_1, X_2) &= A(X_2, X_1) = I_n, \\
A(Y_1, X_1) &= A(Y_2, X_2) = C, \\
A(X_1, Y_1) &= A(X_2, Y_2) = C^T,
\end{align*}
$$

where C will be labeled as $C = A(Y_1, X_1) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \ddots & \ddots & 1 \\ 1 & \ddots & \ddots & 1 \\ 1 & \ddots & \ddots & 1 \end{pmatrix}_{n \times n}$. Now we can represent the adjacency matrix of F_n as follows:

$$
A(F_n) = \begin{pmatrix} 0 & A(X_1, X_2) & A(X_1, Y_1) & 0 \\ A(X_2, X_1) & 0 & 0 & A(X_2, Y_2) \\ A(Y_1, X_1) & 0 & 0 & 0 \\ 0 & A(Y_2, X_2) & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & I_n & C^T & 0 \\ I_n & 0 & 0 & C^T \\ C & 0 & 0 & 0 \\ 0 & C & 0 & 0 \end{pmatrix}.
$$

(7)

It is easy to see that C^T is just the incidence matrix of the n-cycle C_n and by Lemma 2.2, we have

$$
C^TC = D(C_n) + A(C_n) = Q(C_n),
$$

(8)

where $Q(C_n)$ is the signless Laplacian matrix of C_n. Obviously, $|C^TC| \neq 0$.

By Lemma 2.1 and Eq. (8), we obtain

$$
\phi_{F_n}(\lambda) = \begin{vmatrix} \lambda I_n & -I_n & -C^T & 0 \\ -I_n & \lambda I_n & 0 & -C^T \\ -C & 0 & \lambda I_n & 0 \\ 0 & -C & 0 & \lambda I_n \end{vmatrix}
$$

$$
= \lambda^{2n} \cdot |(\lambda + 1)I_n - \frac{C^TC}{\lambda} | \times |(\lambda - 1)I_n - \frac{C^TC}{\lambda} |
$$

$$
= |(\lambda^2 + \lambda)I_n - C^TC| \times |(\lambda^2 - \lambda)I_n - C^TC|
$$
= |(\lambda^2 + \lambda)I_n - Q(C_n)| \times |(\lambda^2 - \lambda)I_n - Q(C_n)|
= QC_n(\lambda^2 + \lambda) \cdot QC_n(\lambda^2 - \lambda).

Using Lemma 2.3, we have
\phi Fn(\lambda) = \prod_{j=1}^{n}(\lambda^2 + \lambda - 2 - 2\cos\frac{2\pi j}{n}) \cdot \prod_{j=1}^{n}(\lambda^2 - \lambda - 2 - 2\cos\frac{2\pi j}{n}).

The proof is completed. □

The result below immediately follows from Lemma 3.1.

Theorem 3.1 ([1, 2]) The characteristic eigenvalues of \(F_n\) are
\[
\begin{cases}
\frac{1}{2} \left(1 \pm \sqrt{9 + 8\cos \frac{2\pi j}{n}}\right), & j = 1, 2, \ldots, n; \\
\frac{1}{2} \left(-1 \pm \sqrt{9 + 8\cos \frac{2\pi j}{n}}\right), & j = 1, 2, \ldots, n.
\end{cases}
\]

If \(F_n\) is replaced with \(L_n\) in the proof of Lemma 3.1, then the adjacency matrix of \(F_n\) in Eq. (7) will be changed as:
\[
A(L_n) = \begin{pmatrix}
0 & I_{n+1} & B^T & 0 \\
I_{n+1} & 0 & 0 & B^T \\
B & 0 & 0 & 0 \\
0 & B & 0 & 0
\end{pmatrix}
\]

where \(C^T\) is replaced with \(B^T\), the incidence matrix of the \(P_{n+1}\), and the corresponding \(Q(C_n)\) in Eq. (8) will be changed as \(B^T B = D(P_{n+1}) + A(P_{n+1}) = Q(P_{n+1})\). Consequently, \(\phi_{L_n}(\lambda) = \lambda^{-2}Q_{P_{n+1}}(\lambda^2 + \lambda) \cdot Q_{P_{n+1}}(\lambda^2 - \lambda)\), which leads to the characteristic polynomial of hexagonal system graph \(L_n\),
\[
\phi_{L_n}(\lambda) = \lambda^{-2} \prod_{j=1}^{n+1}(\lambda^2 + \lambda - 2 - 2\cos\frac{\pi j}{n+1})(\lambda^2 - \lambda - 2 - 2\cos\frac{\pi j}{n+1}). \tag{9}
\]

The result below immediately follows from Eq. (9).

Theorem 3.2 ([1, 2]) The eigenvalues of hexagonal chain graph \(L_n\) are
\[
\begin{cases}
\pm 1; \\
\frac{1}{2} \left(1 \pm \sqrt{9 + 8\cos \frac{\pi j}{n+1}}\right), & j = 1, 2, \ldots, n; \\
\frac{1}{2} \left(-1 \pm \sqrt{9 + 8\cos \frac{\pi j}{n+1}}\right), & j = 1, 2, \ldots, n.
\end{cases}
\]

From Theorem 3.2 we know that the eigenvalue multiplicity of \(L_n\): (i) if \(n\) is even, then every eigenvalue of \(L_n\) has multiplicity 1; (ii) if \(n\) is odd, then 1, -1 have multiplicity 2 and other eigenvalues are simple. From Theorem 3.2 we claim that the spectral radius: \(\rho_{L_n} = \frac{1}{2}(1 + \sqrt{9 + 8\cos \frac{\pi}{n+1}})\) and \(\eta(L_n) = 0\), which is known in [11]. Since \(\lim_{n \to \infty} \frac{1}{2}(1 + \sqrt{9 + 8\cos \frac{\pi}{n+1}}) = \frac{1+\sqrt{17}}{2}\), we have the corollaries below.
Corollary 3.1 Let $\lambda(L_n)$ and $\rho(L_n)$ be the eigenvalue and spectral radius of L_n, respectively. Then $\rho_{L_n} = \frac{1}{2}(1 + \sqrt{9 + 8\cos\frac{\pi}{n+1}})$ and $-\frac{1+\sqrt{17}}{2} < \lambda(L_n) < \frac{1+\sqrt{17}}{2}$.

From Theorem 3.1 we know that the eigenvalue multiplicity of F_n:

(i) If n is even, then eigenvalues $\pm 1, \frac{1+\sqrt{17}}{2}, -\frac{1+\sqrt{17}}{2}$ have multiplicity equal to 1, and other eigenvalues have multiplicity equal to 2; (ii) if n is odd, then eigenvalues $\frac{1+\sqrt{17}}{2}, -\frac{1+\sqrt{17}}{2}$ have multiplicity equal to 1, and other eigenvalues have multiplicity equal to 2.

From Theorem 3.1 we see that the spectral radius of F_n is $\rho(F_n) = \frac{1+\sqrt{17}}{2}$ that achieves at $\frac{1}{2}(1 + \sqrt{9 + 8\cos\frac{2\pi j}{n}})$ for $j = n$, and is independent for any n. Thus $-\frac{1+\sqrt{17}}{2} \leq \lambda(F_n) \leq \frac{1+\sqrt{17}}{2}$. We also get the nullity of F_n as follows.

Corollary 3.2 Let F_n be a hexacyclic system graph with n hexagons. The nullity of F_n is $\eta(F_n) = 1 + (-1)^n$, and so $\eta(F_n) \leq 2$.

4. The characteristic polynomial of M"obius hexacyclic system graph

In this section, we will give a theorem to explicitly express the characteristic polynomial of M"obius hexacyclic system graph M_n that is new, from which the spectrum is also determined. Now we label M_n as in Fig.3.

Theorem 4.1 Let M_n be a M"obius hexacyclic system graph with n hexagons. Then the characteristic polynomial of M_n is given below:

$$
\phi_{M_n}(\lambda) = \prod_{j=0}^{2n-1} \left(\lambda^2 - (-1)^j \lambda - 2 - 2\cos\frac{\pi j}{n} \right).
$$

Proof We partition the vertices set $V(M_n)$ into four parts: $V(M_n) = \tilde{X}_1 \cup \tilde{X}_2 \cup \tilde{Y}_1 \cup \tilde{Y}_2$, where the vertices are ordered as below (to see Fig.3):

$$
\begin{align*}
\tilde{X}_1 &= \{1, 3, 5, \ldots, 2n - 1\}, \\
\tilde{X}_2 &= \{1', 3', 5', \ldots, (2n - 1)'\}, \\
\tilde{Y}_1 &= \{2, 4, 6, \ldots, 2n - 2, 2n\}, \\
\tilde{Y}_2 &= \{2', 4', 6', \ldots, (2n - 2)', (2n)'\}.
\end{align*}
$$

According to the representation method of F_n, we represent the adjacency matrix of M_n as:
It is not difficult to calculate the determinant of M. By Lemma 2.4 e is also a circulant matrix of order 2. Let

$$M^* = \lambda \cdot \left(\begin{array}{cc} \lambda I_n & -I_n \\ -I_n & \lambda I_n \end{array} \right) - \tilde{C} \cdot \tilde{C}^T.$$

By Lemma 2.4 M^* is also a circulant matrix of order 2. Using Lemma 2.5, we obtain

$$M^* = \left(\begin{array}{cccc} \lambda^2 - 2 & -1 & \ldots & 0 \\ -1 & \lambda^2 - 2 & \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & -1 & \lambda^2 - 2 \\ -\lambda & 0 & \ldots & 0 \\ 0 & -\lambda & \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & -\lambda & 0 \\ 0 & \ldots & 0 & -\lambda \end{array} \right)_{2n \times 2n} = (\lambda^2 - 2)W^0 + (-1)W^1 + (-\lambda)W^n + (-1)W^{2n-1}.$$

Then the characteristic polynomial of M_n is

$$\phi_{M_n}(\lambda) = |M_{4n} - A(M_n)| = \left| \begin{array}{cc} \lambda I_n & -I_n \\ -I_n & \lambda I_n \end{array} \right| - \tilde{C} \left| \begin{array}{cc} \lambda I_n & -I_n \\ -I_n & \lambda I_n \end{array} \right| - \tilde{C} \cdot \tilde{C}^T = |\lambda^2 \cdot \left(\begin{array}{cc} \lambda I_n & -I_n \\ -I_n & \lambda I_n \end{array} \right) - \tilde{C} \cdot \tilde{C}^T| = \text{det}(M^*).$$

It is not difficult to calculate the determinant of M^*. Applying Lemma 2.6, we have

$$\text{det}(M^*) = \prod_{j=0}^{2n-1} (\lambda^2 \omega_j^1 + (-\lambda) \omega_j^n + (-1) \omega_j^{2n-1}).$$ (11)

where $\omega_j = e^{\frac{2\pi j}{n}} = e^{\frac{\pi j}{n}}$ and $i = \sqrt{-1}$. By direct computation $\omega_j = e^{\frac{\pi j}{n}}$ also has the following relations: (i) $\omega_j^n = (-1)^j$; (ii) $\omega_j + \omega_j^{2n-1} = 2 \cos \frac{\pi j}{n}$. Thus, by Eq. (11) we have

$$\text{det}(M^*) = \prod_{j=0}^{2n-1} \left(\lambda^2 - (-1)^j \lambda - 2 - 2 \cos \frac{\pi j}{n} \right).$$
So the characteristic polynomial of M_n is
\[\phi_{M_n}(\lambda) = |M_{4n} - A(M_n)| = \det(M^*) = \prod_{j=0}^{2n-1} \left(\lambda^2 - (-1)^j \lambda - 2 - 2 \cos \frac{\pi j}{n} \right). \]

The proof is completed. \(\square\)

The characteristic eigenvalues of M"obius hexacyclic system graph M_n immediately follow from Theorem 4.1.

Theorem 4.2 The characteristic eigenvalues of M_n are
\[
\begin{cases}
\frac{1}{2} \left(1 \pm \sqrt{9 + 8 \cos \frac{2k \pi}{n}} \right), & j = 2k \\
\frac{1}{2} \left(-1 \pm \sqrt{9 + 8 \cos \frac{2(2k - 1) \pi}{n}} \right), & j = 2k + 1
\end{cases}
\]
where $k = 0, 1, \ldots, n-1$.

Consequently, we get the spectrum of M"obius hexacyclic system graph M_n from Theorem 4.2.

Corollary 4.1 The characteristic eigenvalues of M_n are
\[
\begin{cases}
\frac{1}{2} \left(1 \pm \sqrt{9 + 8 \cos \frac{2k \pi}{n}} \right), & k = 1, 2, \ldots, n \\
\frac{1}{2} \left(-1 \pm \sqrt{9 + 8 \cos \frac{2(2k - 1) \pi}{n}} \right), & k = 1, 2, \ldots, n
\end{cases}
\]
and furthermore
(i) If n is even, then eigenvalues $1, 0, \frac{1 \pm \sqrt{17}}{2}$, have multiplicity equal to 1, and other eigenvalues have multiplicity equal to 2.
(ii) If n is odd, then eigenvalues $-1, 0, \frac{1 \pm \sqrt{17}}{2}$ have multiplicity equal to 1, and other eigenvalues have multiplicity equal to 2.

From Corollary 4.1 we claim that the spectral radius of M_n is $\rho_{M_n} = \frac{1 + \sqrt{17}}{2}$ that achieves at $\frac{1}{2}(1 + \sqrt{9 + 8 \cos \frac{2k \pi}{n}})$ for $k = n$ and the minimum eigenvalue is $\lambda_{4n}(M_n) = \frac{1}{2}(-1 - \sqrt{9 + 8 \cos \frac{2k \pi}{n}})$ that achieves at $\frac{1}{2}(-1 - \sqrt{9 + 8 \cos \frac{2(2k + 1) \pi}{n}})$ for $k = n$. Since $\lim_{n \to \infty} \frac{1}{2}(-1 - \sqrt{9 + 8 \cos \frac{2k \pi}{n}}) = -\frac{1 - \sqrt{17}}{2}$, we have the following corollaries.

Corollary 4.2 Let $\lambda(M_n)$ be the eigenvalue of M_n. Then $-\frac{1 - \sqrt{17}}{2} < \lambda(M_n) \leq \frac{1 + \sqrt{17}}{2}$.

From Corollary 4.1, the nullity of M_n immediately follows.

Corollary 4.3 Let M_n be a M"obius hexacyclic system graph with n hexagons. Then the nullity of M_n is $\eta(M_n) = 1$.

5. The energies of L_n, F_n and M_n

In this section, we will give the exact values of the energies of L_n, F_n and M_n. From Theorems 3.1, 3.2 and 4.2, we can obtain the accurate values of the energies of L_n, F_n and M_n, and give an upper bound for the energies of L_n and M_n.

Theorem 5.1 Let $E(L_n)$ be the energy of hexagonal chain graph L_n. Then

$$E(L_n) = 2 + 2 \sum_{j=1}^{n} \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} \leq 6n + 2$$

and the energy value $E(L_n)$ is always no more than $6n + 2$.

Proof By Theorem 3.2, we have the energy of hexagonal chain graph L_n

$$E(L_n) = \sum_{i=1}^{4n+2} |\lambda_i|$$

$$= |1| + |1| + \sum_{j=1}^{n} \left| \frac{1}{2} \left(1 + \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} \right) + \sum_{j=1}^{n} \frac{1}{2} \left(1 - \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} \right) \right|$$

$$= 2 + 2 \sum_{j=1}^{n} \frac{1}{2} \left(1 + \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} + 1 - \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} \right)$$

$$= 2 + 2 \sum_{j=1}^{n} \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}}.$$

Applying Cauchy-Schwartz inequality to $(1, 1, \ldots, 1)$ and $(\sqrt{9 + 8 \cos \frac{\pi j}{n + 1}}, \ldots, \sqrt{9 + 8 \cos \frac{n \pi}{n + 1}})$, we have

$$\left(\sum_{j=1}^{n} \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} \right)^2 \leq \sum_{j=1}^{n} 1^2 \times \sum_{j=1}^{n} \left(\sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} \right)^2$$

$$= n \sum_{j=1}^{n} \left(9 + 8 \cos \frac{\pi j}{n + 1} \right)$$

$$= n \left(9n + 8 \sum_{j=1}^{n} \cos \frac{\pi j}{n + 1} \right)$$

$$= 9n^2.$$

It is easy to get

$$E(L_n) = 2 + 2 \sum_{j=1}^{n} \sqrt{9 + 8 \cos \frac{\pi j}{n + 1}} \leq 6n + 2.$$ \(12\)

If $n = 1$, then the equality in (12) holds. So the proof of Theorem 5.1 is completed. \(\Box\)

In addition, we obtain the accurate value of the energy of F_n by Theorem 3.1.
Theorem 5.2 If the energy of F_n is denoted by $E(F_n)$, then

$$E(F_n) = 2 \sum_{j=1}^{n} \sqrt{9 + 8 \cos \frac{2\pi j}{n}}.$$

Proof By Theorem 3.1 we have

$$E(F_n) = \sum_{i=1}^{4n} |\lambda_i|$$

$$= \sum_{j=1}^{n} \left| \frac{1 + \sqrt{9 + 8 \cos \frac{2\pi j}{n}}}{2} \right| + \sum_{j=1}^{n} \left| \frac{1 - \sqrt{9 + 8 \cos \frac{2\pi j}{n}}}{2} \right| +$$

$$\sum_{j=1}^{n} \left| \frac{-1 + \sqrt{9 + 8 \cos \frac{2\pi j}{n}}}{2} \right| + \sum_{j=1}^{n} \left| \frac{-1 - \sqrt{9 + 8 \cos \frac{2\pi j}{n}}}{2} \right|$$

$$= 2 \sum_{j=1}^{n} \left(\frac{1 + \sqrt{9 + 8 \cos \frac{2\pi j}{n}}}{2} + \frac{1 - \sqrt{9 + 8 \cos \frac{2\pi j}{n}}}{2} \right)$$

$$= 2 \sum_{j=1}^{n} \sqrt{9 + 8 \cos \frac{2\pi j}{n}}.$$

The proof is completed. \Box

We obtain the accurate value of the energy of M_n by Theorem 4.2 and give an upper bound for the energy of M_n.

Theorem 5.3 If the energy of M_n is denoted by $E(M_n)$, then

$$E(M_n) = \sum_{j=1}^{2n} \sqrt{9 + 8 \cos \frac{\pi j}{n}} < 6n$$

and the energy value $E(M_n)$ is always less than $6n$.

Proof By Corollary 4.1 we have

$$E(M_n) = \sum_{i=1}^{4n} |\lambda_i|$$

$$= \sum_{j=1}^{n} \frac{1}{2} \left(1 + \sqrt{9 + 8 \cos \frac{2\pi j}{n}} \right) + \sum_{j=1}^{n} \frac{1}{2} \left(1 - \sqrt{9 + 8 \cos \frac{2\pi j}{n}} \right) +$$

$$\sum_{j=1}^{n} \frac{1}{2} \left(-1 + \sqrt{9 + 8 \cos \frac{(2j+1)\pi}{n}} \right) + \sum_{j=1}^{n} \frac{1}{2} \left(-1 - \sqrt{9 + 8 \cos \frac{(2j+1)\pi}{n}} \right)$$

$$= \frac{1}{2} \sum_{j=1}^{n} \left(1 + \sqrt{9 + 8 \cos \frac{2\pi j}{n}} + \sqrt{9 + 8 \cos \frac{2\pi j}{n} - 1} \right) +$$
\[
\frac{1}{2} \sum_{j=1}^{n} \left(\sqrt{9 + 8 \cos \left(\frac{2j + 1}{n} \pi \right)} - 1 + \sqrt{9 + 8 \cos \left(\frac{2j + 1}{n} \pi \right)} + 1 \right) \\
= \sum_{j=1}^{n} \sqrt{9 + 8 \cos \frac{2\pi j}{n}} + \sum_{j=1}^{n} \sqrt{9 + 8 \cos \left(\frac{2j + 1}{n} \pi \right)} \\
= \sum_{j=1}^{n} \left(\sqrt{9 + 8 \cos \frac{2\pi j}{n}} + \sqrt{9 + 8 \cos \left(\frac{2j + 1}{n} \pi \right)} \right) \\
= \sum_{j=1}^{2n} \sqrt{9 + 8 \cos \frac{\pi j}{n}}.
\]

Applying Cauchy-Schwartz inequality to \((1, 1, \ldots, 1)\) and \(\left(\sqrt{9 + 8 \cos \frac{\pi j}{n}}, \ldots, \sqrt{9 + 8 \cos \frac{2n\pi j}{n}} \right)\), we have
\[
\left(\sum_{j=1}^{2n} \sqrt{9 + 8 \cos \frac{\pi j}{n}} \right)^2 < \sum_{j=1}^{2n} 1^2 \times \sum_{j=1}^{2n} \left(\sqrt{9 + 8 \cos \frac{\pi j}{n}} \right)^2 \\
= 2n \cdot \sum_{j=1}^{2n} \left(9 + 8 \cos \frac{\pi j}{n} \right) \\
= 2n \cdot \left(18n + 8 \sum_{j=1}^{2n} \cos \frac{\pi j}{n} \right) \\
= 36n^2.
\]

It is easy to get
\[
E(M_n) = \sum_{j=1}^{2n} \sqrt{9 + 8 \cos \frac{\pi j}{n}} < 6n.
\]

The proof is completed. \(\square\)

Acknowledgements The authors would like to thank the referees for useful and helpful comments and suggestions.

References

On the characteristic polynomial of a hexagonal system and its application

