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Abstract Let Γ be a signed graph and A(Γ) be the adjacency matrix of Γ. The nullity of

Γ is the multiplicity of eigenvalue zero in the spectrum of A(Γ). In this paper, the connected

bicyclic signed graphs (including simple bicyclic graphs) of order n with nullity n − 7 are

completely characterized.
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1. Introduction

A signed graph is a graph with a sign attached to each of its edges. So a signed graph

Γ = (G, σ) consists of a simple graph G = (V (G), E(G)), referred to as its underlying graph, and

a mapping σ : E(G) → {+,−}, the edge labelling. The underlying graph G of Γ is denoted by
uΓ. The adjacency matrix of Γ is A(Γ) = (aσij) with aσij = σ(vivj)aij , where (aij) is the adjacency

matrix of the underlying graph G. In the case of σ = +, which is an all-positive edge labelling,

the adjacency matrix A(G,+) is exactly the classical adjacency matrix of G. The nullity of a

signed graph Γ is defined as the multiplicity of the eigenvalue zero in spectrum of A(Γ), and is

denoted by η(Γ). The rank of Γ is referred to the rank of A(Γ), and is denoted by r(Γ). Clearly,

η(Γ) + r(Γ) = n if Γ has n vertices.

Let C be a cycle of Γ. The sign of C is defined as sgn(C) = Πe∈Cσ(e), and denoted by

sgn(C). If sgn(C) = + or sgn(C) = −, we call the cycle C is balanced or unbalanced. A signed

graph is said to be balanced if all its cycles are balanced, or equivalently, all cycles have an even

number of negative edges; otherwise it is called unbalanced.

Let θ : V (G) → {+,−} be any sign function. Switching Γ by θ means forming a new signed

graph Γθ = (G, σθ) whose underlying graph is the same as G, but whose sign function is defined

on an edge uv by σθ(uv) = θ(u)σ(uv)θ(v). Note that switching does not change the signs or

balance of the cycles of Γ. If we define a (diagonal) signature matrix Dθ with dv = θ(v) for

each v ∈ V (G), then A(Γθ) = DθA(Γ)Dθ. Two graphs Γ1,Γ2 are called switching equivalent,
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denoted by Γ1 ∼ Γ2, if there exists a switching function θ such that Γ2 = Γ1, or equivalently

A(Γ2) = DθA(Γ1)D
θ. Note that switching equivalence is a relation of equivalence, and two

switching equivalent graphs have the same nullities. A signed graph Γ is balanced if and only

if Γ = (G, σ) ∼ (G,+) (see [1]). So the results on the nullity for simple graphs still hold for

balanced signed graphs.

Signed graphs were introduced by Harary [2] in connection with the study of the theory of

social balance in social psychology. The matroids of graphs were extended to those of signed

graphs by Zaslavsky [3], and the Matrix-Tree Theorem for signed graphs was obtained by Za-

slavsky [3] and by Chaiken [4]. More recent results on signed graphs can be found in [1] and

[5].

Recently, some papers have investigated the nullity of simple graphs. It is known that

0 ≤ η(G) ≤ n− 2 if G is a simple graph of order n containing at least one edge. Cheng and Liu

[6] characterized the simple graphs of order n with nullity n − 2 and n − 3. Chang et al. [7, 8]

characterized the simple graphs of order n with nullity n−4 and n−5. Zhu et al. [9] characterized

the unicyclic graphs with nullity n− 6 and n− 7. Li and Chang [10] gave the nullity set of three

kinds of bicyclic graphs, and characterized two kinds of bicyclic graphs with nullity n− 6. More

results on the nullity of special classes of simple graphs can be found in the papers [11–19].

In this paper, we discuss the nullity of the signed graphs. Fan et al. [20] characterized the

unicyclic signed graphs of order n with nullity n − 2, n − 3, n − 4 and n − 5, respectively. All

signed graphs of order n with nullity n − 2 and n − 3 were characterized in [21]. The authors

in [21] also determined the unbalanced bicyclic signed graphs of order n with nullity n − 3 or

n−4, and signed bicyclic graphs of order n with n−5. In this paper, we characterize the bicyclic

signed graphs (including simple bicyclic graphs) with nullity n− 7.

2. Some lemmas

We first introduce some concepts and notations of signed graphs. However, these definitions

are based only on the underlying graph of the signed graph. Let Γ = (G, σ) be a signed graph

with order n. Γ is called an acyclic graph if it contains no cycles; Γ is called a unicyclic (resp.,

bicyclic) graph if it is connected and it has n (resp., n+ 1) edges.

Denote by N(v) the neighbourhood of v in Γ and d(v) the degree of v. A vertex of Γ is

called pendant if it has degree one. An edge subset M ⊆ E(Γ) is called a matching of Γ if no two

edges of M share a common vertex. A matching M is called maximum in Γ if it has maximum

cardinality among all matchings of Γ, and the maximum cardinality is denoted by µ(Γ).

The disjoint union of two graphs Γ1 and Γ2 is denoted by Γ1 ∪ Γ2. The union of k disjoint

copies of Γ is denoted by kΓ. Denote by Pn, Cn and Sn a path, a cycle and a star, respectively,

all of which are simple graphs of order n. An isolated vertex is denoted by K1.

The following result on the nullity of a signed graph is obvious.

Lemma 2.1 Let Γ be a signed graph. If Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γt, where Γ1,Γ2, . . . ,Γt are the

connected components of Γ, then η(Γ) =
∑t

i=1 η(Γi).
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Denote by Pv1v2v3 a path on vertices v1, v2, v3 with edges v1v2, v2v3. If a signed graph

Γ contains a path Pv1v2v3 which satisfies d(v2) = 2, v1v3 /∈ E(Γ), N(v1) ∩ N(v3) = {v2}, then
Pv1v2v3 is called a special path of Γ.

Lemma 2.2 ([21]) Let Γ be a signed graph containing a special path Pv1v2v3, where σ(v1v2) =

−1, σ(v2v3) = 1. If Γ′ is a signed graph obtained from Γ by contracting the special path Pv1v2v3

into a single vertex, i.e., deleting the vertex v2 and the edges v1v2 and v2v3 and identifying the

vertices v1 and v3, then η(Γ) = η(Γ′).

Lemma 2.3 ([20]) Let Γ be a signed graph containing a pendant vertex, and Γ′ be the induced

subgraph of Γ obtained by deleting this pendant vertex together with the vertex adjacent to it.

Then η(Γ) = η(Γ′).

Lemma 2.4 ([20]) (1) If T is an acyclic signed graph or a signed tree of order n, then η(T ) =

n− 2µ(T ), where µ(T ) is the matching number of T .

(2) If Cn is a balanced signed cycle, then η(Cn) = 2 if n ≡ 0 (mod4), and η(Cn) = 0

otherwise.

(3) If Cn is a unbalanced signed cycle, then η(Cn) = 2 if n ≡ 2 (mod4), and η(Cn) = 0

otherwise.

Fan et al. [21] used Lemma 2.2 to characterize the signed graphs with nullity n−2 and n−3.

For a signed connected graph Γ, η(Γ) = n − 2 if and only if Γ is a balanced complete bipartite

graph.

Let Γ be a signed graph and v be a vertex of Γ. The positive neighbourhood N+(v) (resp.,

the negative neighbourhood N−(v)) of v is the set of vertices joining v with positive edges (resp.,

negative edges).

Lemma 2.5 ([21]) Let Γ be a signed graph of order n ≥ 3. Then η(Γ) = n − 3 if and only if

Γ is a complete tripartite graph with partition (V1, V2, V3) together with some isolated vertices,

which satisfies that for each i = 1, 2, 3, there exits a vertex ui ∈ Vi such that for every other

vertices v ∈ Vi, either N+(v) = N+(ui), N−(v) = N−(ui) or N+(v) = N−(ui), N−(v) = N+(ui).

U *

Figure 2.1 The graph U∗

Fan et al. [20] characterized the signed unicyclic graphs of order n with nullity n− 2, n− 3 and

n − 5, respectively. The results on the signed unicyclic graphs with nullity n − 2 (resp., n − 3)

are the corollaries of the above two results.

Lemma 2.6 ([20]) Let Γ be a unicyclic signed graph of order n. Then

(1) η(Γ) = n− 2 if and only if Γ is the balanced cycle C4.

(2) η(Γ) = n− 3 if and only if uΓ is C3.
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Lemma 2.7 ([20]) Let Γ be a unicyclic signed graph of order n ≥ 5. Then η(Γ) = n− 5 if and

only if uΓ is C5 or U∗ (see Figure 2.1).

3. The bicyclic signed graphs with nullity n− 7

Let Ck and Cl be two edge-disjoint cycles. Suppose that v1 is a vertex of Ck and vq is a

vertex of Cl. Joining v1 and vq by a path v1v2 · · · vq of length q − 1, where q ≥ 1 and q = 1

means identifying v1 and vq, the resultant graph, denoted by ∞(k, q, l) shown in Figure 3.1, is

called an ∞-graph. Let Pl+1, Pp+1 and Pq+1 be three vertex-disjoint paths, where l, p, q ≥ 1,

and at most one of them is 1. Identifying the three initial vertices and terminal vertices of them,

respectively, the resultant graph, denoted by θ(l, p, q) shown in Figure 3.1, is called a θ-graph.

Let Bn be the set of all n-vertex bicyclic signed graphs. Obviously, the underlying graphs

of the signed graphs in Bn consist of three types graphs: first type denoted by B+
n is the set of

those graphs each of which is an ∞-graph or an ∞-graph with trees attached when q ≥ 2; second

type denoted by B++
n is the set of those graphs each of which is an ∞-graph or an ∞-graph with

trees attached when q = 1; third type denoted by θn is the set of those graphs each of which

is a θ-graph or a θ-graph with trees attached. Then Bn = (B+
n , σ) ∪ (B++

n , σ) ∪ (θn, σ) with a

mapping σ : E → {+,−}, the edge labeling.

Figure 3.1 The graphs ∞(k, q, l) and θ(l, p, q)

Note that switching equivalence is a relation of equivalence, and two switching equivalent

graphs have the same nullities. So, when we discuss the nullity of signed graphs, we can choose

an arbitrary representative of each switching equivalent class.

Lemma 3.1 Let Γ be a bicyclic signed graph of order n.

(1) If uΓ ∈ B+
n ∪ B++

n , then Γ is switching equivalent to a bicyclic signed graph of order

n, which has exactly one (arbitrary) sign-uncertain edge on each cycles of Γ and the other edges

are all positive.

(2) If uΓ ∈ θn, then Γ is switching equivalent to a bicyclic signed graph of order n, which

has exactly one (arbitrary) sign-uncertain edge on two (arbitrary) paths of Γ and the other edges

are all positive, where the paths are Pl+1, Pp+1 and Pq+1.

Proof If uΓ ∈ B+
n ∪ B++

n (resp., uΓ ∈ θn), let e1, e2 be two arbitrary edges on each cycles of

Γ (resp., two arbitrary paths of Γ) and Γ − e1 − e2 be the signed graph obtained from Γ by

deleting the edges e1 and e2. Observe that Γ− e1− e2 is balanced. So there exits a sign function

θ : V (Γ− e1 − e2) → {+,−} such that (Γ− e1 − e2)
θ consists of positive edges. Returning to the

Γθ, the signs of e1, e2 are uncertain and the other signs are all positive. The result follows. �
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Lemma 3.2 Let Γ be a bicyclic signed graph of order n ≥ 5. Then η(Γ) = n− 5 if and only if

Γ is one of the following graphs (see Figure 3.2) with certain properties:

(1) uΓ = B1;

(2) uΓ ∈ {B2, B3, B5} and the two triangles of Γ have the same balance;

(3) uΓ ∈ {B4, B8} and the quadrangle of Γ is balanced;

(4) uΓ = B6 and the quadrangle of Γ is unbalanced;

(5) uΓ = B7 and the cycle C6 of Γ is unbalanced.

Proof Fan et al. [21] determined the bicyclic signed graphs of order n ≥ 5 with nullity n − 5.

By Theorem 3.3 of [21], if Γ contains pendant vertices or Γ contains no pendant vertices and
uΓ ∈ B+

n ∪ B++
n , then Γ is one of the following graphs (see Figure 3.2) with certain properties:

(1) uΓ = B1;

(2) uΓ ∈ {B2, B3, B5} and the two triangles of Γ have the same balance;

(3) uΓ ∈ {B4} and the quadrangle of Γ is balanced.

But when Γ contains no pendant vertices and uΓ ∈ θn, they omitted the signed graphs with

underlying graph B8 and the quadrangles of them are balanced. So we only show the case when

Γ contains no pendant vertices and uΓ ∈ θn.

If Γ contains no special paths, then uΓ is one of the graphs θ(1, 2, 3), θ(1, 3, 3), θ(2, 2, 2).

By a direct calculation according to Lemma 3.1, uΓ = θ(1, 2, 3) = B6 and the quadrangle of Γ is

unbalanced.

8

(-)

(-)

Figure 3.2 The graphs B1, B2, . . . , B8

If Γ contains a special path Pv1v2v3, without loss of generality, we assume that the sign of

v1v2 is negative, the sign of v2v3 is positive and v1 is a vertex of degree 3. Now we contract the

path Pv1v2v3 into a single vertex, say u, then the resulting graph Γ′ has rank 3 by Lemma 2.2.

By Lemma 2.5, Γ′ is a complete tripartite graph, i.e., uΓ′ = θ(1, 2, 2), and the two triangles of Γ′

have the same balance. So there exists a sign function τ defined on V (Γ′) such that all edges of Γ′

are positive or all edges of Γ′ are positive except the common edge of the two triangles. Returning

to the original graph, uΓ = θ(1, 2, 4) or θ(2, 2, 3). Noting that V (Γ) \ {v1, v2, v3} = V (Γ′) \ {u},
we extend the sign function τ on V (Γ′) to a sign function θ on V (Γ), where θ(v1) = θ(v2) =

θ(v3) = τ(u) and θ(v) = τ(v) for other vertex v of Γ. Then Γθ is the graph Bi, i = 7, 8 with edge

labelling as in Figure 3.2. Therefore, uΓ = B7 and the cycle C6 of Γ is unbalanced or uΓ = B8

and the quadrangle of Γ is balanced. This completes the proof of the necessity. The sufficiency
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is clear by simple calculation. �

Lemma 3.3 Let Γ be a bicyclic signed graph of order n ≥ 7 and uΓ be an ∞-graph or a

θ-graph. Then η(Γ) = n−7 if and if Γ is one of the following graphs (see Figure 3.3) with certain

properties:

(1) uΓ ∈ {∞(4, 2, 3), θ(1, 3, 4)} and the quadrangle of Γ is unbalanced;

(2) uΓ ∈ {∞(4, 3, 3),∞(4, 1, 5), θ(2, 2, 5)} and the quadrangle of Γ is balanced;

(3) uΓ ∈ {∞(6, 1, 3), θ(2, 3, 4)} and the cycle C6 of Γ is unbalanced;

(4) uΓ ∈ {θ(2, 3, 3), θ(1, 2, 5)} and the cycle C6 of Γ is balanced;

(5) uΓ ∈ {θ(1, 2, 6), θ(1, 4, 4)} and the cycle C8 of Γ is balanced;

(6) uΓ = ∞(5, 1, 3) and the sign of C5 is different from that of C3;

(7) uΓ = ∞(3, 3, 3) and the two triangles of Γ have the same balance.

Proof The sufficiency can be verified by a little calculation according to Lemma 3.1 or Lemma

2.2.

Now assume that η(Γ) = n− 7. We divide the discussion into two cases.

Case 1 Γ contains no special paths.

If uΓ = ∞(k, q, l), then the length of any cycle in Γ is less than 5 and q ≤ 2, otherwise Γ

contains a special path. If uΓ = θ(l, p, q), where l ≤ p ≤ q, then l = 1 and q ≤ 3, otherwise

Γ contains a special path. Therefore, uΓ can be one of the graphs ∞(4, 2, 4), ∞(4, 2, 3) or

∞(4, 1, 4). By a direct calculation according to Lemma 3.1, uΓ = ∞(4, 2, 3) and the quadrangle

of Γ is unbalanced.

Case 2 Γ contains a special path Pv1v2v3.

Without loss of generality, we assume that the sign of v1v2 is negative and the sign of v2v3

is positive. Contract the path Pv1v2v3 into a single vertex, say u, then the resulting graph Γ′

will have rank 5 by Lemma 2.2.

If Γ′ contains no special path, then uΓ′ = Bi, i = 4, 5, 6 (see Figure 3.1) by Lemma 3.2.

Returning to the original graph Γ, we need to replace an arbitrary vertex in Bi, i = 4, 5, 6 with

special path Pv1v2v3. Then we get the following signed graphs by considering all situations.

(i) When uΓ′ = B4 = ∞(4, 1, 3) and the quadrangle of Γ′ is balanced.
uΓ = ∞(6, 1, 3) and the cycle C6 of Γ is unbalanced, or uΓ = ∞(4, 3, 3) and the quadrangle

of Γ is balanced, or uΓ = ∞(4, 1, 5) and the quadrangle of Γ is balanced.

(ii) When uΓ′ = B5 = ∞(3, 1, 3) and the two triangles of Γ′ have the same balance.
uΓ = ∞(5, 1, 3) and the sign of C5 is different from that of C3, or

uΓ = ∞(3, 3, 3) and the

two triangles of Γ have the same balance.

(iii) When uΓ′ = B6 = θ(1, 2, 3) and the quadrangle of Γ′ is unbalanced.
uΓ = θ(1, 3, 4) and the quadrangle of Γ is unbalanced, or uΓ = θ(2, 3, 3) and the cycle C6 of

Γ is balanced, or uΓ = θ(1, 2, 5) and the cycle C6 of Γ is balanced.

If Γ′ contains a special path, then uΓ′ = Bi, i = 7, 8 (see Figure 3.1) by Lemma 3.2.

Returning to the original graph Γ, we need to replace an arbitrary vertex in Bi, i = 7, 8 with
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special path Pv1v2v3. Therefore, Γ is one of the following graphs: uΓ = θ(1, 2, 6) and the cycle

C8 of Γ is balanced, uΓ = θ(2, 3, 4) and the cycle C6 of Γ is unbalanced, uΓ = θ(1, 4, 4) and the

cycle C8 of Γ is balanced or uΓ = θ(2, 2, 5) and the cycle C4 is balanced. This completes the

proof. �

(4,2,3) (6,1,3) (4,3,3) (4,1,5) (5,1,3)

(3,3,3) (1,3,4) (2,3,3) (1,2,5) (1,2,6)

(2,3,4) (1,4,4) (2,2,5)

Figure 3.3 The underlying graphs of the ∞-graphs and θ-graphs with order n and nullity n− 7

If Γ is a bicyclic signed graph with pendent vertices, Γ can be obtained from a signed ∞(k, q, l)

(or θ(p, l, q)) by attaching some signed trees. We call the signed ∞(k, q, l) (or θ(p, l, q)) the base

of the corresponding Γ, denoted by χΓ.

Lemma 3.4 Let Γ be a bicyclic signed graph of order n with pendent vertices. Then η(Γ) = n−7

if and only if Γ is one of the following graphs (see Figure 3.4) with certain properties:

(1) uΓ = G∗
i , i = 1, 2, . . . , 5, 30, 31, . . . , 37;

(2) uΓ = G∗
i , i = 6, 7, . . . , 13, 18, 19 and the two triangles of Γ have the same balance;

(3) uΓ = G∗
i , i = 14, 15, . . . , 17, 27, 28, 29, 38 and the quadrangle of Γ is balanced;

(4) uΓ = G∗
i , i = 20, 21, 22 and the quadrangle of Γ is unbalanced;

(5) uΓ = G∗
i , i = 23, 24, 25, 26 and the cycle C6 of Γ is unbalanced.

Proof The sufficiency can be verified by Lemmas 2.1–2.7, Lemmas 3.2 and 3.3.

Now we show the necessity. Assume that Γ is a bicyclic signed graph with pendent vertices

with η(Γ) = n− 7. Let T = V (Γ) \ V (χΓ) and S be the set of vertices in χΓ which are adjacent

to a vertex of T . Let v0v1 · · · vh be a longest signed path Ph+1 in Γ such that v0 ∈ S and

v1, . . . , vh ∈ T .

In the rest of proof, we distinguish two cases.

Case 1 h ≥ 2.

Let Γ1 be the signed graph obtained from Γ by deleting vh and vh−1. Since Ph+1 is the

longest signed path of Γ such that v0 ∈ S and v1, . . . , vh ∈ T and h ≥ 2, Γ1 has a unique

nontrivial connected component Γ11. Let |Γ11| = n1. Then Γ1 = Γ11∪ (n−n1−2)K1. Note that
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Γ11 is a bicyclic signed graph with order n1. By Lemmas 2.1 and 2.3, we have η(Γ) = η(Γ1) =

η(Γ11) + (n− n1 − 2) = n− 7, which implies that η(Γ11) = n1 − 5.

Figure 3.4 The underlying graphs of the bicyclic signed graphs containing pendent vertices with

order n and nullity n− 7

Subcase 1.1 There are pendent vertices in Γ11.

By Lemma 3.2, we have uΓ11 = B1, B2 or B3 and the two triangles of B2 and B3 have the

same balance, where B1, B2 and B3 are shown in Figure 3.2. So uΓ1 = B1 ∪ (n − n1 − 2)K1

or uΓ1 = B2 ∪ (n − n1 − 2)K1 or uΓ1 = B3 ∪ (n − n1 − 2)K1. Now recover vh and vh−1 to Γ1,

we need to insert edges attached arbitrary signs from vh−1 to each n− n1 − 1 isolated vertices.

This gives a signed star Sn−n1 . Since Γ11 already contains two cycles, in order to recover Γ, we

only need to connect the center of Sn−n1 to a vertex of Bi, i = 1, 2, 3 with arbitrary signed edge.

Hence uΓ = G∗
i , i = 1, 2, . . . , 4, or uΓ = G∗

i , i = 5, 6, . . . , 13 and the two triangles of Γ have the

same balance (see Figure 3.4).

Subcase 1.2 There are no pendent vertices in Γ11, by Lemma 3.2, then the underlying graphs
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of uΓ11 are Bi, i = 4, 5, . . . , 10 (see Figure 3.2). In order to recover Γ, we only need to connect

the center of Sn−n1 to a vertex of Bi, i = 4, 5, . . . , 8 with an arbitrary signed edge. Then the
uΓ = G∗

i , i = 14, 15, . . . , 17 and the quadrangle of Γ is balanced, or uΓ = G∗
i , i = 18, 19 and

the two triangles of Γ have the same balance, or uΓ = G∗
i , i = 20, 21, 22 and the quadrangle

of Γ is unbalanced, or uΓ = G∗
i , i = 23, 24, 25, 26 and the cycle C6 of Γ is unbalanced, or

uΓ = G∗
i , i = 27, 28, 29 and the quadrangle of Γ is balanced.

Case 2 h = 1.

In this case, Γ is obtained from a signed ∞-graph or a signed θ-graph attached some pendent

signed edges. Let v be a pendent vertex of Γ, and u be the vertex in V (χΓ) adjacent to v. Delete

v, u, and then we get the graph Γ1 = Γ11 ∪ Γ12 ∪ · · · ∪ Γ1t, where Γ11,Γ12, . . . ,Γ1t are connected

components of Γ1. Some of these components may be trivial, i.e., K1. But not all components

are trivial, otherwise, uΓ = Sn, a contradiction. Moreover, it is not difficult to see that Γ1 has

at most two nontrivial components. Now we consider the following two subcases:

Subcase 2.1 There is a unique nontrivial component in Γ1.

Let Γ11 be the unique nontrivial component of Γ1 and |V (Γ11)| = n1. Then Γ1 = Γ11 ∪
(n− n1 − 2)K1 and η(Γ) = η(Γ1) = η(Γ11) + n− n1 − 2, by Lemmas 2.1 and 2.3. It follows that

η(Γ11) = n1 − 5. Note that Γ11 is a unicyclic signed graph or signed tree. By Lemma 2.4, there

is no signed tree with nullity n1 − 5. Hence Γ11 is a unicyclic signed graph with η(Γ11) = n1 − 5.

By Lemma 2.7, Γ11 is a signed C5 or a signed graph with U∗ (see Figure 2.1) as underlying

graph. Then we get that Γ are signed graphs with G∗
i , i = 30, 31, . . . , 37 as underlying graph.

Subcase 2.2 There are two nontrivial components in Γ1.

Without loss of generality, we assume that Γ11 and Γ12 are nontrivial. Let |V (Γ11)| = n1

and |V (Γ12)| = n2. Then Γ1 = Γ11 ∪ Γ12 ∪ (n− n1 − n2 − 2)K1 and η(Γ1) = η(Γ11) + η(Γ12) +

n − n1 − n2 − 2 = n − 7. Hence η(Γ11) + η(Γ12) = n1 + n2 − 5. Without loss of generality, we

assume η(Γ11) = n1 − 2 and η(Γ12) = n2 − 3. By Lemma 2.4, Γ11 and Γ12 are not both signed

trees.

Then Γ11 is a signed tree and Γ12 is a unicyclic signed graph or Γ11 and Γ12 are both

unicyclic signed graphs. If Γ11 is a signed tree and Γ12 is a unicyclic signed graph, then Γ11 is a

signed Sn1 and Γ12 is a signed C3 by Lemma 2.6. Then uΓ = G∗
i , i = 32, 36 as underlying graph.

If Γ11 and Γ12 are both unicyclic signed graphs, then Γ11 is a balanced C4 and Γ12 is a signed

C3 by Lemma 2.6. Then uΓ = G∗
38 and the C4 of Γ is balanced. This completes the proof. �

Theorem 3.5 Let Γ be a connected bicyclic signed graph of order n ≥ 7. Then η(Γ) = n−7 if and

only if uΓ = ∞(4, 2, 3),∞(6, 1, 3),∞(4, 3, 3),∞(4, 1, 5),∞(5, 1, 3),∞(3, 3, 3), θ(1, 3, 4), θ(2, 3, 3),

θ(1, 2, 5), θ(1, 2, 6), θ(1, 4, 4), θ(2, 3, 4), θ(2, 2, 5), G∗
i , i = 1, 2, . . . , 38 with certain properties (see

Lemmas 3.3 and 3.4).

Proof By Lemmas 3.3 and 3.4, Theorem 3.5 holds immediately. �
From Theorem 3.5, we easily get a characterization of simple bicyclic graphs (or balanced
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bicyclic signed graphs) of order n with nullity n− 7.

Corollary 3.6 Let G be a connected bicyclic simple graph of order n ≥ 7. Then η(G) = n−7 if

and only if G = ∞(4, 3, 3),∞(4, 1, 5),∞(3, 3, 3), θ(2, 3, 3), θ(1, 2, 6), θ(1, 4, 4), θ(1, 2, 5), θ(2, 2, 5),

G∗
i , i = 1, 2, . . . , 19, 27, 28, . . . , 38 (see Figure 3.4).
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