Ordering Graphs by the Augmented Zagreb Indices

Yufei HUANG1,∗, Bolian LIU2

1. Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangdong 510403, P. R. China;
2. College of Mathematical Science, South China Normal University, Guangdong 510631, P. R. China

Abstract Recently, Furtula et al. proposed a valuable predictive index in the study of the heat of formation in octanes and heptanes, the augmented Zagreb index (AZI index) of a graph \(G \), which is defined as

\[
AZI(G) = \sum_{u \neq v \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2} \right)^3,
\]

where \(E(G) \) is the edge set of \(G \), \(d_u \) and \(d_v \) are the degrees of the terminal vertices \(u \) and \(v \) of edge \(uv \), respectively. In this paper, we obtain the first five largest (resp., the first two smallest) AZI indices of connected graphs with \(n \) vertices. Moreover, we determine the trees of order \(n \) with the first three smallest AZI indices, the unicyclic graphs of order \(n \) with the minimum, the second minimum AZI indices, and the bicyclic graphs of order \(n \) with the minimum AZI index, respectively.

Keywords augmented Zagreb index; connected graphs; trees; unicyclic graphs; bicyclic graphs

MR(2010) Subject Classification 05C35; 05C50

1. Introduction

Let \(G \) be a simple graph with vertex set \(V(G) \) and edge set \(E(G) \). Let \(n = |V(G)| \) and \(m = |E(G)| \). Let \(N(u) \) be the set of all neighbors of \(u \in V(G) \) in \(G \), and let \(d_u = |N(u)| \) be the degree of vertex \(u \). A vertex \(u \) is called a pendent vertex if \(d_u = 1 \). A connected graph \(G \) is called a tree (resp., unicyclic graph and bicyclic graph) if \(m = n - 1 \) (resp., \(m = n \) and \(m = n + 1 \)).

Molecular descriptors have found a wide application in QSAR/QSPR studies [1]. Among them, topological indices have a prominent place. Inspired by recent work on the atom-bond connectivity index [2,3], Furtula et al. [4] proposed a valuable predictive index whose prediction power is better than atom-bond connectivity index in the study of the heat of formation in octanes and heptanes, the augmented Zagreb index (AZI index for short) of a graph \(G \), which is defined as

\[
AZI(G) = \sum_{u \neq v \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2} \right)^3.
\]

Received July 25, 2014; Accepted December 22, 2014
Supported by the National Natural Science Foundation of China (Grant No. 11326221).
* Corresponding author
E-mail address: fayger@qq.com (Yufei HUANG)
Basic properties of AZI index have been studied in [5]. Besides, by using different graph parameters, some attained upper and lower bounds and the corresponding extremal graphs on the AZI indices for various classes of connected graphs have been given in [4,5].

In this paper, we obtain the first five largest (resp., the first two smallest) AZI indices of connected graphs with \(n \) vertices. Moreover, we determine the trees of order \(n \) with the first three smallest AZI indices, the unicyclic graphs of order \(n \) with the minimum, the second minimum AZI indices, and the bicyclic graphs of order \(n \) with the minimum AZI index, respectively.

2. The first five largest AZI indices of connected graphs

Denote by \(P_n, C_n, K_n \) and \(S_n \) the path, cycle, complete graph and star of order \(n \), respectively. Let \(G_1 \lor G_2 \) denote the graph obtained from two graphs \(G_1 \) and \(G_2 \) by connecting the vertices of \(G_1 \) with the vertices of \(G_2 \). Let \(\overline{G} \) be the complement of a graph \(G \). Let \(G + e \) denote the graph obtained from a graph \(G \) by inserting an edge \(e \notin E(G) \). Let \(G - e \) denote the graph obtained from a graph \(G \) by deleting the edge \(e \in E(G) \). Let \(S^+_{n} = S_{n} + e \).

Let \(G_n \) be the set of connected graphs of order \(n \), and let \(G_{n,m} \) be the set of connected graphs with \(n \) vertices and \(m \) edges, where \(n - 1 \leq m \leq \binom{n}{2} \). Obviously, \(G_1 = \{K_1\} \), \(G_2 = \{K_2\} \) and \(G_n = \bigcup_{1 \leq m \leq \binom{n}{2}} G_{n,m} \). Now we shall investigate the AZI index of \(G \in G_n \) for \(n \geq 3 \). To begin with, a key lemma to obtain our main results is given as follows.

Lemma 2.1 ([5]) Let \(G \in G_n \) and \(G \nsubseteq K_n \), where \(n \geq 3 \). Then for \(e \notin E(G) \), \(AZI(G) < AZI(G + e) \).

It follows from Lemma 2.1 that

Corollary 2.2 Let \(n, m_1, m_2 \) be integers with \(n \geq 3 \) and \(n - 1 \leq m_1 < m_2 \leq \binom{n}{2} \).

1. Let \(G_1 \in G_{n,m_1} \). Then there exists a graph \(G_2 \in G_{n,m_2} \) such that \(AZI(G_2) > AZI(G_1) \).
2. Let \(G_2 \in G_{n,m_2} \). Then there exists a graph \(G_1 \in G_{n,m_1} \) such that \(AZI(G_1) < AZI(G_2) \).

Observe that \(G_3 = \{K_3, P_3\} \) and \(G_4 = \{K_4, K_4 - e, C_4, S^+_{4}, P_4, S_4\} \). By Corollary 2.2 and simply calculating, we immediately get \(AZI(K_3) > AZI(P_3) \) and

\[
AZI(K_4) > AZI(K_4 - e) > AZI(C_4) > AZI(S^+_4) > AZI(P_4) > AZI(S_4).
\]

For \(n \geq 5 \), observe that \(G_{n,\binom{n}{2}} - 3 \) is closed to \(\{K_n\} \), \(G_{n,\binom{n}{2}} - \{K_n - e\} \), \(G_{n,\binom{n}{2}} - 2 \) is closed to \(\{\overline{K}_n \lor K_{n-3}, C_4 \lor K_{n-4}\} \) and \(G_{n,\binom{n}{2}} - 3 \) is closed to \(\{\overline{S}_3 \lor P_4, \overline{K}_3 \lor P_4, \overline{K}_3 \lor S_4, \overline{K}_3 \lor (K_{n-3} - e), C_4 \lor (K_{n-4} - e) \} \).

Lemma 2.3 Let \(G \in G_{n,\binom{n}{2}} - 3 \) and \(G \nsubseteq S_3 \lor K_{n-4} \). Then for \(n \geq 5 \),

\[
AZI(S_3 \lor K_{n-3}) > AZI(C_4 \lor K_{n-4}) > AZI(S_3 \lor K_{n-4}) > AZI(G).
\]

Proof By direct computation, for \(n \geq 5 \), we have

\[
AZI(S_3 \lor K_{n-3}) = \frac{(n - 3)(n - 4)(n - 1)^6}{2(2n - 4)^3} + \frac{2(n - 3)(n - 1)^3(n - 2)^3}{(2n - 5)^3} + \frac{(n - 2)^6 + (n - 3)^4(n - 1)^3}{(2n - 6)^3}.
\]
It can be checked by calculator that for $n \geq 5$, $\text{AZI}(\overline{3} \vee K_{n-3}) - \text{AZI}(C_4 \vee K_{n-4}) > 0$, $\text{AZI}(C_4 \vee K_{n-4}) - \text{AZI}(\overline{3} \vee K_{n-4}) > 0$ and $\text{AZI}(\overline{3} \vee K_{n-4}) - \text{AZI}(G) > 0$, where $G \in \{ \overline{3} \vee K_{n-3}, P_4 \vee K_{n-4}, \overline{3} \vee (K_{n-3} - e), C_4 \vee (K_{n-4} - e) \}$ ($n \geq 6$).

The following theorem gives the first five largest AZI indices of connected graphs with n vertices, where $n \geq 5$.

Theorem 2.4 Let $G \in \mathbb{G}_n$ and $G \notin \{ K_n, K_n - e, \overline{3} \vee K_{n-3}, C_4 \vee K_{n-4}, \overline{3} \vee K_{n-4} \}$, where $n \geq 5$. Then $\text{AZI}(K_n) > \text{AZI}(K_n - e) > \text{AZI}(\overline{3} \vee K_{n-3}) > \text{AZI}(C_4 \vee K_{n-4}) > \text{AZI}(\overline{3} \vee K_{n-4}) > \text{AZI}(G)$.

Proof Since $G \in \mathbb{G}_n$ ($n \geq 5$) and $G \notin \{ K_n, K_n - e, \overline{3} \vee K_{n-3}, C_4 \vee K_{n-4}, \overline{3} \vee K_{n-4} \}$, we have $G \in \bigcup_{n-1 \leq m \leq (\overline{3})} \mathbb{G}_{n,m}$. If $G \in \bigcup_{n-1 \leq m \leq (\overline{3})} \mathbb{G}_{n,m}$, then by Corollary 2.2, there exists a graph $G^* \in \mathbb{G}_{n,(\overline{3})}$ such that $\text{AZI}(G) < \text{AZI}(G^*)$. It follows from Lemma 2.3 that

$$\text{AZI}(G) < \text{AZI}(G^*) \leq \text{AZI}(\overline{3} \vee K_{n-4}). \quad (2.1)$$

If $G \in \mathbb{G}_{n,(\overline{3})}$, since $G \not\cong \overline{3} \vee K_{n-4}$, then we also have

$$\text{AZI}(G) < \text{AZI}(\overline{3} \vee K_{n-4}) \quad (2.2)$$

by Lemma 2.3. Moreover, $K_n \cong (K_n - e) + e$ and $K_n - e \cong (\overline{3} \vee K_{n-3}) + e$, then by Lemma 2.1, we obtain that

$$\text{AZI}(K_n) > \text{AZI}(K_n - e) > \text{AZI}(\overline{3} \vee K_{n-3}). \quad (2.3)$$

Furthermore, $\text{AZI}(K_n - e) > \text{AZI}(\overline{3} \vee K_{n-4})$, so we have $\text{AZI}(K_n) > \text{AZI}(K_n - e) > \text{AZI}(\overline{3} \vee K_{n-3})$.

$$\text{AZI}(\overline{3} \vee K_{n-3}) > \text{AZI}(\overline{3} \vee K_{n-4})$$

$$\text{AZI}(\overline{3} \vee K_{n-4}) > \text{AZI}(C_4 \vee K_{n-4})$$

$$\text{AZI}(C_4 \vee K_{n-4}) > \text{AZI}(\overline{3} \vee K_{n-4})$$

$$\text{AZI}(\overline{3} \vee K_{n-4}) > \text{AZI}(G)$$

Thus, $\text{AZI}(G) < \text{AZI}(G^*) \leq \text{AZI}(\overline{3} \vee K_{n-4})$.
Combining inequalities (2.1)–(2.3) with the inequality
\[\text{AZI}(S_3 \vee K_{n-3}) > \text{AZI}(C_4 \vee K_{n-4}) > \text{AZI}(S_4 \vee K_{n-4}) \]
in Lemma 2.3, we obtain the desired results. \(\square\)

3. Ordering trees by the AZI indices

Let \(x_{ij}\) be the number of edges of a graph \(G\) connecting vertices of degrees \(i\) and \(j\), and let \(A_{ij} = (\frac{ij}{i+j-2})^3\), where \(i, j\) are positive integers. Obviously, \(x_{ij} = x_{ji}\) and \(A_{ij} = A_{ji}\). Then the augmented Zagreb index of a graph \(G\) can be rewritten as \(\text{AZI}(G) = \sum_{i\leq j} x_{ij}A_{ij}\).

Lemma 3.1
1. \(A_{ij}\) is decreasing for \(j \geq 2\).
2. \(A_{ij} = 8\) for \(j \geq 1\).
3. If \(i \geq 3\) is fixed, then \(A_{ij}\) is increasing for \(j \geq 2\).

Proof
Clearly, \(A_{2j} = (\frac{2i}{2j-2})^3 = 8\) for \(j \geq 1\). Note that
\[\frac{\partial(A_{ij})}{\partial j} = \frac{3i^2j^2(i-2)}{(i+j-2)^3} \]
Hence \(A_{ij}\) is decreasing and \(A_{ij}\) is increasing for \(j \geq 2\), where \(i \geq 3\) is fixed. \(\square\)

Let \(T_n\) be the set of trees of order \(n \geq 3\), and let \(T_{n,p}\) be the set of trees with \(n\) vertices and \(p\) pendant vertices, where \(2 \leq p \leq n-1\). Then \(T_n = \cup_{2 \leq p \leq n-1} T_{n,p}\). Let \(DS_n(p_1, p_2)\) be the tree of order \(n\) formed from the path of order \(n-p_1-p_2\) by attaching \(p_1\) and \(p_2\) pendant vertices to its end vertices respectively, where \(p_2 \geq p_1 \geq 1\) and \(p_1 + p_2 \leq n-2\). Clearly, \(T_{n,n-2} = \{DS_n(p_1, n-2-p_1)| 1 \leq p_1 \leq \lfloor \frac{n-2}{2} \rfloor \}\) and \(T_{n,2} = \{DS_n(1,1)\}\).

Theorem 3.2
Let \(T \in T_{n,p}\), where \(2 \leq p \leq n-3\). Then
\[\text{AZI}(T) \geq \frac{(\lfloor \frac{n}{2} \rfloor + 1)^3}{(\lfloor \frac{n}{2} \rfloor)^2} + \frac{(\lceil \frac{n}{2} \rceil + 1)^3}{(\lceil \frac{n}{2} \rceil)^2} + 8(n-1-p) \]
with equality if and only if \(T \equiv DS_n(\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil)\).

Proof
The case of \(p = 2\) is trivial since \(T_{n,2} = \{DS_n(1,1)\}\) = \(\{P_n\}\). Notice that there are \(t\) vertices, denoted by \(v_1, v_2, \ldots, v_t\), such that \(\cup_{i=1}^t N(v_i)\) contains all pendant vertices of \(T\). Suppose that there are \(p_i\) pendant vertices in \(N(v_i)\), where \(i = 1, 2, \ldots, t\) and \(\sum_{i=1}^t p_i = p\). Without loss of generality, we may assume that \(p_i \geq 1\) for \(1 \leq i \leq t\). Since \(p \neq n-1\) (namely, \(T\) is not a star), then \(t \geq 2\). Hence
\[\text{AZI}(T) = \sum_{i=1}^t p_i A_{v_i} + \sum_{2 \leq i \leq n-1} x_{ij}A_{ij}. \]
(3.1)

Note that the terminal vertices of a diameter-achieving path \(P\) of \(T\) are two pendant vertices. Without loss of generality, suppose that the neighbors of the terminal vertices are \(v_1\) and \(v_2\), respectively. By the choice of the diameter-achieving path \(P\), we have \(d_{v_1} = p_1 + 1\) and \(d_{v_2} = \ldots\).
Moreover, the function f vertex of degree 2.

We claim that $d_{vi} \leq p + 2 - d_{v1}$ for $2 \leq i \leq t$. Otherwise, if $d_{vi} > p + 2 - d_{v1}$ for some $i \neq 1$, then

$$p + 2t - 2 \geq \sum_{i=1}^{t} d_{vi} > d_{v1} + (p + 2 - d_{v1}) + 2(t - 2) = p + 2t - 2,$$

which is a contradiction. Therefore, by Lemma 3.1, we have

$$\sum_{i=1}^{t} p_{i} A_{1,d_{vi}} = p_{1} A_{1,d_{v1}} + \sum_{i=2}^{t} p_{i} A_{1,d_{vi}} \geq p_{1} A_{1,d_{v1}} + \sum_{i=2}^{t} p_{i} A_{1,p+2-d_{vi}} = p_{1} A_{1,p+1} + (p - p_{1}) A_{1,p-p_{1}+1}.$$

If $\sum_{i=1}^{t} p_{i} A_{1,d_{vi}} = p_{1} A_{1,p+1} + (p - p_{1}) A_{1,p-p_{1}+1}$ and $t \geq 3$, then we get

$$p + 2t - 2 \geq \sum_{i=1}^{t} d_{vi} \geq d_{v1} + 2(p + 2 - d_{v1}) + 2(t - 3) = (p + 2t - 2) + (p - d_{v1}),$$

equivalently, $d_{v1} = p_{1} + 1 \geq p$, which is a contradiction. Consequently, we conclude that

$$\sum_{i=1}^{t} p_{i} A_{1,d_{vi}} \geq p_{1} A_{1,p+1} + (p - p_{1}) A_{1,p-p_{1}+1} = \left(\frac{p_{1} + 1}{p_{1}^{2}}\right)^{3} + \frac{(p - p_{1} + 1)^{3}}{(p - p_{1})^{2}}$$

with equality if and only if $t = 2$ and $d_{v2} = p + 2 - d_{v1} = p - p_{1} + 1$, namely, $p_{1} + p_{2} = p$.

Moreover, the function $f(x) = \frac{(x+1)^{3}}{x^{2}}$ is convex increasing for $x \geq 2$, since

$$f'(x) = \frac{(x+1)^{2}(x-2)}{x^{3}} \geq 0 \text{ and } f''(x) = \frac{6(x+1)}{x^{4}} > 0.$$

Besides, $f(1) = 8 > f(2) = \frac{27}{4}$, and then

$$f(1) + f(p-1) > f(2) + f(p-2) \geq \cdots \geq f(\lfloor \frac{p}{2} \rfloor) + f(\lfloor \frac{p}{2} \rfloor).$$

It leads to

$$\sum_{i=1}^{t} p_{i} A_{1,d_{vi}} \geq \left(\frac{p_{1} + 1}{p_{1}^{2}}\right)^{3} + \frac{(p - p_{1} + 1)^{3}}{(p - p_{1})^{2}} \geq \left(\frac{\lfloor \frac{p}{2} \rfloor + 1}{\lfloor \frac{p}{2} \rfloor^{2}}\right)^{3} + \frac{(\lfloor \frac{p}{2} \rfloor + 1)^{3}}{(\lfloor \frac{p}{2} \rfloor)^{2}}.$$

The equality holds if and only if $t = 2$, $p_{1} = \lfloor \frac{p}{2} \rfloor$, and $p_{2} = \lceil \frac{p}{2} \rceil$.

On the other hand, it follows from Lemma 3.1 that

$$\sum_{2 \leq i \leq j \leq n-1} x_{ij} A_{ij} \geq \sum_{2 \leq i \leq j \leq n-1} x_{ij} A_{2j} = 8(n-1-p)$$

with equality holding if and only if all edges of T are pendent edges or the edges with one end vertex of degree 2.

All in all, it follows from Equation (3.1) that

$$\text{AZI}(T) \geq \left(\frac{\lfloor \frac{p}{2} \rfloor + 1}{\lfloor \frac{p}{2} \rfloor^{2}}\right)^{3} + \frac{(\lfloor \frac{p}{2} \rfloor + 1)^{3}}{(\lfloor \frac{p}{2} \rfloor)^{2}} + 8(n-1-p).$$
with equality if and only if $T \cong DS_n([\frac{n-3}{2}], [\frac{n-2}{2}])$. This completes the proof. \hfill \Box

Corollary 3.3 Let $T \in \cup_{2 \leq p \leq n-3} \mathbb{T}_{n,p}$. Then
\[
\text{AZI}(T) \geq \frac{\left(\left\lfloor \frac{n-3}{2} \right\rfloor + 1 \right)^3}{\left(\left\lfloor \frac{n-3}{2} \right\rfloor \right)^2} + \frac{\left(\left\lfloor \frac{n-2}{2} \right\rfloor + 1 \right)^3}{\left(\left\lfloor \frac{n-2}{2} \right\rfloor \right)^2} + 16
\]
with equality if and only if $T \cong DS_n([\frac{n-3}{2}], [\frac{n-2}{2}])$.

Proof By Theorem 3.2, it will suffice to show that $\text{AZI}(DS_n([\frac{n-1}{2}], [\frac{n-1}{2}])) > \text{AZI}(DS_n([\frac{n}{2}], [\frac{n}{2}]))$, where $3 \leq p \leq n-3$. By Lemma 3.1, we have
\[
\text{AZI}(DS_n([\frac{p}{2}], [\frac{p}{2}])) = \left(\frac{p}{2} \right) A_{1,\lceil \frac{p}{2} \rceil} + \left(\frac{p}{2} \right) A_{1,\lceil \frac{p}{2} \rceil} + 8(n-1-p)
\]
\[
= \left(\frac{p-1}{2} \right) A_{1,\lceil \frac{p-1}{2} \rceil} + \left(\frac{p-1}{2} \right) A_{1,\lceil \frac{p-1}{2} \rceil} + 8(n-1-p)
\]
\[
< \left(\frac{p-1}{2} \right) A_{1,\lceil \frac{p-1}{2} \rceil} + \left(\frac{p-1}{2} \right) A_{1,\lceil \frac{p-1}{2} \rceil} + 8(n-1-p)
\]
\[
= \text{AZI}(DS_n([\frac{p-1}{2}], [\frac{p-1}{2}])). \hfill \Box
\]

An order of trees in $\mathbb{T}_{n,n-2}$ ($n \geq 4$) by their AZI indices is given as follows.

Lemma 3.4 Observe that $\mathbb{T}_{n,n-2} = \{DS_n(p_1, n-2 - p_1) | 1 \leq p_1 \leq \lfloor \frac{n-2}{2} \rfloor \}$. Then
\[
\text{AZI}(DS_n([\frac{n-2}{2}], [\frac{n-2}{2}])) < \cdots < \text{AZI}(DS_n(2, n-4)) < \text{AZI}(DS_n(1, n-3)).
\]

Proof For $1 \leq p_1 \leq \lfloor \frac{n-2}{2} \rfloor$, note that
\[
\text{AZI}(DS_n(p_1, n-2 - p_1)) = \left(\frac{p_1 + 1}{p_1} \right)^3 + \left(\frac{n-1-p_1}{n-2-p_1} \right)^3 + \left(\frac{p_1 + 1}{n-2-p_1} \right)^3 + \left(\frac{n-1}{n-2-p_1} \right)^3 = f(p_1).
\]
The result follows since the function $f(p_1)$ is increasing for $1 \leq p_1 \leq \lfloor \frac{n-2}{2} \rfloor$. \hfill \Box

Let $T_6^*, T_7^*, T_7^{**}, T_7^{***}$ be the trees as shown in Figure 1.

\[\text{Figure 1} \quad T_6^*, T_7^*, T_7^{**}, T_7^{***}\]

Now we obtain an order of \mathbb{T}_n for $3 \leq n \leq 7$ by their AZI indices. Observe that $\mathbb{T}_3 = \{S_3\}$, $\mathbb{T}_4 = \{P_4, S_4\}$, $\mathbb{T}_5 = \{P_5, DS_5(1,2), S_5\}$,
\[
\text{AZI}(P_4) > \text{AZI}(S_4) \quad \text{and} \quad \text{AZI}(P_5) > \text{AZI}(DS_5(1,2)) > \text{AZI}(S_5). \quad (3.2)
\]

Note that $\mathbb{T}_6 = \{P_6, T_6^*, DS_6(1,2), DS_6(2,2), DS_6(1,3), S_6\}$,
\[
\text{AZI}(P_6) > \text{AZI}(T_6^*) > \text{AZI}(DS_6(1,2)) > \text{AZI}(DS_6(2,2)) > \text{AZI}(DS_6(1,3)) > \text{AZI}(S_6),
\]
and $\mathbb{T}_7 = \{P_7, T_7^*, DS_7(1,2), T_7^{**}, T_7^{***}, DS_7(1,3), DS_7(2,2), DS_7(2,3), DS_7(1,4), S_7\}$,
\[
\text{AZI}(P_7) > \text{AZI}(T_7^*) > \text{AZI}(DS_7(1,2)) > \text{AZI}(T_7^{**})
\]

Yuefei HUANG and Bolian LIU
Case 2

From inequalities (3.2)–(3.4) and Theorem 3.5, the inequality
\[\text{AZI}(T) < \text{AZI}(DS_n(1, n - 3)), \]
where \(n \geq 8 \).

Moreover, the trees of order \(n \geq 8 \) with the first three smallest AZI indices are determined.

Theorem 3.5 Let \(T \in T_n \) and \(T \not\cong S_n, DS_n(1, n - 3), DS_n([\frac{n - 3}{2}], [\frac{n - 3}{2}]) \), where \(n \geq 8 \). Then
\[\text{AZI}(S_n) < \text{AZI}(DS_n(1, n - 3)) < \text{AZI}(DS_n([\frac{n - 3}{2}], [\frac{n - 3}{2}])) < \text{AZI}(T). \]

Proof It is obvious that
\[\text{AZI}(S_n) = (n - 3)A_{1, n - 1} + 2A_{1, n - 1} < (n - 3)A_{1, n - 2} + 16 = \text{AZI}(DS_n(1, n - 3)) \]
\[< [\frac{n - 3}{2}]A_{1, [\frac{n - 3}{2}]+1} + [\frac{n - 3}{2}]A_{1, [\frac{n - 3}{2}]+1} + 16 \]
\[= \text{AZI}(DS_n([\frac{n - 3}{2}], [\frac{n - 3}{2}])). \]

Since \(T \in T_n \) \((n \geq 8) \) and \(T \not\cong S_n, DS_n(1, n - 3), DS_n([\frac{n - 3}{2}], [\frac{n - 3}{2}]) \), we consider the following two cases.

Case 1 \(T \in T_{n-2} \). By Lemma 3.4, we need to prove that
\[\text{AZI}(DS_n(2, n - 4)) > \text{AZI}(DS_n([\frac{n - 3}{2}], [\frac{n - 3}{2}])) \]
for \(n \geq 8 \). By Theorem 3.2,
\[\text{AZI}(DS_n([\frac{n - 3}{2}], [\frac{n - 3}{2}])) < \text{AZI}(DS_n(2, n - 5)) \]
\[= 2A_{1, 3} + 16 + (n - 5)A_{1, n - 4} \]
\[< 2A_{1, 3} + A_{3, n - 3} + (n - 4)A_{1, n - 3} \]
\[= \text{AZI}(DS_n(2, n - 4)). \]

Case 2 \(T \in \bigcup_{2 \leq p \leq n - 3} T_{n, p} \). By Corollary 3.3, we immediately get
\[\text{AZI}(DS_n([\frac{n - 3}{2}], [\frac{n - 3}{2}])) < \text{AZI}(T). \]

By using Theorem 3.5, we obtain the first two smallest AZI indices of connected graphs with \(n \geq 5 \) vertices as follows.

Theorem 3.6 Let \(G \in G_n \) and \(G \not\cong S_n, DS_n(1, n - 3), \) where \(n \geq 5 \). Then
\[\text{AZI}(S_n) < \text{AZI}(DS_n(1, n - 3)) < \text{AZI}(G). \]

Proof From inequalities (3.2)–(3.4) and Theorem 3.5, the inequality
\[\text{AZI}(S_n) < \text{AZI}(DS_n(1, n - 3)) \]
holds for \(n \geq 5 \). Note that \(G \in \bigcup_{n - 1 \leq m \leq n} G_{n, m} \). We have the following two cases.

Case 1 \(G \in G_{n, n - 1} = T_n \) \((n \geq 5) \). By inequalities (3.2)–(3.4) and Theorem 3.5,
\[\text{AZI}(DS_n(1, n - 3)) < \text{AZI}(G). \]

Case 2 \(G \in \bigcup_{n \leq m \leq (\frac{n}{2})} G_{n, m} \). By Corollary 2.2, there exists a graph \(G^* \in G_{n, n - 1} \) such that
\[\text{AZI}(G^*) < \text{AZI}(G). \] If \(G^* \not\cong S_n \), then we immediately get
\[\text{AZI}(DS_n(1, n - 3)) \leq \text{AZI}(G^*) < \text{AZI}(G). \] If \(G^* \cong S_n \), then by Lemma 2.1, we conclude that \(G \) is obtained from \(S_n \) by inserting...
some edges. It follows that
\[
AZI(G) \geq AZI(S_n^+) = 24 + (n - 3)A_{1,n-1} \\
> 16 + (n - 3)A_{1,n-2} = AZI(DS_n(1, n - 3)). \quad \Box
\]

4. Unicyclic graphs with the first two smallest AZI indices

Denote by \(C_{n,p} \) the unicyclic graph of order \(n \) formed by attaching \(p \) pendant vertices to a vertex of the cycle \(C_{n-p} \), where \(0 \leq p \leq n - 3 \). Let \(C_{n,p}^{p_1,p_2, \ldots, p_{n-p}} \) denote the unicyclic graph of order \(n \) obtained from the cycle \(C_{n-p} = v_1v_2 \cdots v_{n-p}v_1 \) by attaching \(p_i \) pendant vertices to vertex \(v_i \), where \(p_i \geq 0 \), \(i = 1, 2, \ldots, n - p \) and \(\sum_{i=1}^{n-p} p_i = p \). Clearly, \(C_{n,0} \cong C_n \), \(C_{n,n-3} \cong S_n^+ \) and \(C_{n,0}^{0,0,\ldots,0} \cong C_{n,p} \).

Let \(U_3^p \) be the unicyclic graph obtained by identifying one vertex of \(C_3 \) and one end vertex of \(P_3 \). Let \(U_n \) be the set of unicyclic graphs of order \(n \geq 3 \). Obviously, \(U_3 = \{K_3\} \), \(U_4 = \{C_4, S_4^+\} \) and \(U_5 = \{C_5, S_5^+, C_5;1, C_5;0,0,0, U_5^0\} \). By simply calculating, we get that \(AZI(S_4^+) < AZI(C_4) \) and \(AZI(S_5^+) < AZI(C_5;1,0) < AZI(C_5) = AZI(U_5^0) \).

Let \(U_{n,p} \) be the set of unicyclic graphs with \(n \) vertices and \(p \) pendant vertices, where \(0 \leq p \leq n - 3 \). Then \(U_n = \cup_{0 \leq p \leq n-3} U_{n,p} \).

Lemma 4.1 ([5]) Let \(U \in U_{n,p} \), where \(0 \leq p \leq n - 3 \). Then
\[
AZI(U) \geq \frac{(p+2)^3}{(p+1)^3} + 8(n-p)
\]
with equality if and only if \(U \cong C_{n,p} \).

Lemma 4.2 Let \(C_{n,p} \) be the unicyclic graph of order \(n \) defined above, where \(0 \leq p \leq n - 3 \). Then \(AZI(C_{n,0}) > AZI(C_{n,1}) > \cdots > AZI(C_{n,n-4}) > AZI(C_{n,n-3}) \).

Proof Note that \(AZI(C_{n,p}) = \frac{p(p+2)^3}{(p+3)^3} + 8(n-p) \). Let \(f(x) = \frac{x(x+2)^3}{(x+1)^3} + 8(n-x) \). Then
\[
f'(x) = -\frac{x(7x^3 + 28x^2 + 42x + 24)}{(x+1)^4} \leq 0.
\]
Thus \(f(x) \) is decreasing for \(x \geq 0 \). This completes the proof. \(\Box \)

By Lemmas 4.1 and 4.2, it is easy to obtain the following corollary.

Corollary 4.3 Let \(U \in \cup_{0 \leq p \leq n-4} U_{n,p} \). Then
\[
AZI(U) \geq \frac{(n-4)(n-2)^3}{(n-3)^3} + 32
\]
with equality if and only if \(U \cong C_{n,n-4} \).

Lemma 4.4 Let \(U \in U_{n,n-3} \) and \(U \not\cong S_n^+ \), where \(n \geq 6 \). Then \(AZI(U) > AZI(C_{n,n-4}) > AZI(S_n^+) \).

Proof Since \(U \in U_{n,n-3} \), we may assume that \(G \cong C_{n,n-3}^{p_1,p_2,p_3} \), where \(p_1 \geq p_2 \geq p_3 \geq 0 \) and \(\sum_{i=1}^{3} p_i = n - 3 \). Notice that \(U \not\cong S_n^+ \), then \(p_2 \geq 1 \). Let \(r = (p_1-1)(A_{1,p_1+2}-A_{1,n-2}) + \).
Lemma 5.1
Proof
Observe that

\[\text{AZI}(U) = \text{AZI}(C_{n,n-4}) = r + A_{1,p_1+2} + A_{p_1+2,p_2+2} - 16. \]

(4.1)

Case 1 \(p_3 = 0 \). Since \(n \geq 6 \), then \(p_1 \geq 2 \). By Lemma 3.1, we have \(r > 0 \) and

\[\text{AZI}(U) - \text{AZI}(C_{n,n-4}) = r + A_{1,p_1+2} + A_{p_1+2,p_2+2} - 16. \]

(4.1)

Subcase 1.1 \(p_1 = 2 \). It follows from (4.1) and Lemma 3.1 that

\[\text{AZI}(U) - \text{AZI}(C_{n,n-4}) > 0 + A_{1,4} + A_{4,3} - 16 = \frac{4^3}{3^3} + \frac{12^3}{5^3} - 16 > 0. \]

Subcase 1.2 \(p_1 \geq 3 \). Then by Lemma 3.1 and (4.1), we have

\[\text{AZI}(U) - \text{AZI}(C_{n,n-4}) > 0 + 1 + A_{5,3} - 16 = 1 + \frac{15^3}{6^3} - 16 > 0. \]

Case 2 \(p_3 \geq 1 \). By Lemma 3.1, we obtain that \(r > 0 \) and

\[\text{AZI}(U) - \text{AZI}(C_{n,n-4}) = r + A_{1,p_1+2} + A_{p_1+2,p_2+2} + A_{p_1+2,p_3+2} + A_{p_2+2,p_3+2} - 32 \]

\[> 0 + 1 + 3A_{3,3} - 32 = 1 + 3 \cdot \frac{9^3}{4^3} - 32 > 0. \]

Combining the above cases, we get that \(\text{AZI}(U) > \text{AZI}(C_{n,n-4}) \). Moreover, it is easy to obtain that \(\text{AZI}(C_{n,n-4}) = (n-4)A_{1,n-2} + 32 > \text{AZI}(S_n^+) = (n-3)A_{1,n-1} + 24. \)

It follows from Corollary 4.3 and Lemma 4.4 that the unicyclic graphs of order \(n \geq 6 \) with the minimum and the second minimum AZI indices are determined.

Theorem 4.5 Let \(U \in U_n \) and \(G \not\cong S_n^+, C_{n,n-4} \), where \(n \geq 6 \). Then

\[\text{AZI}(S_n^+) < \text{AZI}(C_{n,n-4}) < \text{AZI}(U). \]

5. Bicyclic graphs with the minimum AZI index

Let \(B_n \) be the set of bicyclic graphs of order \(n \geq 4 \). Clearly, \(B_4 = \{K_4 - e\} \). Let \(B_{n,p} \) be the set of bicyclic graphs with \(n \) vertices and \(p \) pendant vertices, where \(0 \leq p \leq n-4 \). Then \(B_n = \bigcup_{0 \leq p \leq n-4} B_{n,p} \).

Denote by \(D_{n,r,s,p} \) the bicyclic graph of order \(n \) by identifying one vertex of two cycles \(C_r \) and \(C_s \), and attaching \(p \) pendant vertices to the common vertex, where \(r \geq s \geq 3 \) and \(0 \leq p = n + 1 - r - s \leq n - 5 \).

Lemma 5.1 ([5]) Let \(B \in B_{n,p} \), where \(0 \leq p \leq n - 5 \). Then

\[\text{AZI}(B) \geq \frac{p(p+4)^3}{(p+3)^3} + 8(n+1-p) \]

with equality if and only if \(B \cong D_{n,r,s,p} \), where \(r \geq s \geq 3 \) and \(r + s = n + 1 - p \).

Lemma 5.2 Let \(D_{n,r,s,p} \) be the bicyclic graph of order \(n \) defined above, where \(r \geq s \geq 3 \) and \(0 \leq p = n + 1 - r - s \leq n - 5 \). Then \(\text{AZI}(D_{n,r,s,0}) > \text{AZI}(D_{n,r,s,1}) > \cdots > \text{AZI}(D_{n,r,s,n-5}) \).

Proof Observe that

\[\text{AZI}(D_{n,r,s,p}) = \frac{p(p+4)^3}{(p+3)^3} + 8(n+1-p) := g(p). \]
Then
\[
g'(p) = -7p^4 + 84p^3 + 372p^2 + 704p + 456 \quad (p+3)^4 < 0.
\]
Hence \(g(p)\) is decreasing for \(p \geq 0\). The proof is completed. \(\Box\)

It can be seen from Lemmas 5.1 and 5.2 that

Corollary 5.3 Let \(B \in \bigcup_{0 \leq p \leq n-5} \mathbb{B}_{n,p}\). Then AZI\((B) \geq \frac{(n-5)(n-1)^3}{(n-2)^3} + 48\) with equality if and only if \(B \cong D_{n,3,n-5}\).

Now we consider the set \(B_{n,n-4}\), where \(n \geq 5\). Let \(E_{n}^{p_1,p_2,p_3,p_4}\) be the bicyclic graph obtained from \(K_4 - e\) by attaching \(p_1\) pendant vertices to vertex \(v_i \in V(K_4 - e)\) for \(1 \leq i \leq 4\), where \(d_{v_1} = d_{v_2} = 3, \ d_{v_3} = d_{v_4} = 2, \ p_1 \geq p_2 \geq 0, \ p_3 \geq p_4 \geq 0\) and \(\sum_{i=1}^{4} p_i = n - 4\). Then \(B_{n,n-4} = \{E_{n}^{p_1,p_2,p_3,p_4}| p_1 \geq p_2 \geq 0, p_3 \geq p_4 \geq 0\ and \ \sum_{i=1}^{4} p_i = n - 4\}\).

Lemma 5.4 Let \(B \in \mathbb{B}_{n,n-4}\), where \(n \geq 5\). Then
\[
\text{AZI}(B) \geq \frac{(n-4)(n-1)^3}{(n-2)^3} + \frac{27(n-1)^3}{n^3} + 32
\]
with equality if and only if \(B \cong E_{n}^{n-4,0,0,0}\).

Proof Let \(B \cong E_{n}^{n}^{p_1,p_2,p_3,p_4}\), where \(p_1 \geq p_2 \geq 0, p_3 \geq p_4 \geq 0\) and \(\sum_{i=1}^{4} p_i = n - 4\). Note that
\[
\text{AZI}(E_{n}^{p_1,p_2,p_3,p_4}) = p_1 A_{1,p_1+3} + p_2 A_{1,p_2+3} + p_3 A_{1,p_3+2} + p_4 A_{1,p_4+2} + A_{p_1+3,p_2+3} + A_{p_1+3,p_3+2} + A_{p_1+3,p_4+2} + A_{p_2+3,p_3+2} + A_{p_2+3,p_4+2}.
\]
Let \(r = p_1(A_{1,p_1+3}-A_{1,n-1}) + p_2(A_{1,p_2+3}-A_{1,n-1}) + p_3(A_{1,p_3+2}-A_{1,n-1}) + p_4(A_{1,p_4+2}-A_{1,n-1})\). Then by Lemma 3.1, we have \(r \geq 0\) with equality holding if and only if \(p_1 = n - 4\) and \(p_2 = p_3 = p_4 = 0\). Now we discuss the following cases.

Case 1 \(p_2 \geq 1\). Then \(p_1 \geq p_2 \geq 1\).

Subcase 1.1 \(p_3 \geq 1\). It follows from Lemma 3.1 that
\[
\text{AZI}(B) - \text{AZI}(E_{n}^{n-4,0,0,0}) = r + A_{p_1+3,p_2+3} + A_{p_1+3,p_3+2} + A_{p_1+3,p_4+2} + A_{p_2+3,p_3+2} + A_{p_2+3,p_4+2} - A_{3,n-1} - 32
\]
\[
> 0 + 16^3 + 12^3 \geq 16 - 27\geq 32 > 0.
\]

Subcase 1.2 \(p_3 = 0\). Then \(p_4 = 0\). Hence by Lemma 3.1, we have
\[
\text{AZI}(B) - \text{AZI}(E_{n}^{n-4,0,0,0}) = r + A_{p_1+3,p_2+3} - A_{3,n-1}
\]
\[
> 0 + \frac{[p_1 p_2 + 3(n-1)]^3 - [3(n-1)]^3}{n^3} > 0.
\]

Case 2 \(p_2 = 0\). Let \(q(x) = A_{3,x}\). Then \(q(x)\) is concave increasing for \(x \geq 2\) since
\[
q'(x) = \frac{81 x^2}{(x+1)^4} > 0 \quad \text{and} \quad q''(x) = -\frac{162 x(x-1)}{(x+1)^5} < 0.
\]
It follows that
\[A_4(\frac{n}{2}) + A_3(\frac{n}{2}) > \cdots > A_3,n-2 + A_3,2, \quad (5.1) \]
\[A_3(\frac{n+1}{2}) + A_3(\frac{n+1}{2}) > \cdots > A_3,n-1 + A_3,2. \quad (5.2) \]

Subcase 2.1 $p_4 \geq 1$. Then $p_3 \geq p_4 \geq 1$. If $p_1 \geq 1$, then by Lemma 3.1,
\[AZI(B) = AZI(E_n^{n-4,0,0,0}) \geq r + 3A_{4,3} + 2A_{3,3} - A_{3,n-1} - 32 > 0 + 3 \cdot \frac{123}{5^7} + 2 \cdot \frac{93}{4^3} - 27 - 32 > 0. \]
If $p_1 = 0$, then by Lemma 3.1 and the inequality (5.1), for $n \geq 5$ we have
\[AZI(B) = AZI(E_n^{n-4,0,0,0}) \]
\[= r + A_{3,3} + 2(A_{3,p_3+2} + A_{3,p_4+2}) - A_{3,n-1} - 32 \]
\[> 0 + A_{3,3} + 2(A_{3,n-2} + A_{3,2}) - A_{3,n-1} - 32 \]
\[= \frac{(n-4)(143n^5 - 3751n^4 - 337n^3 + 5859n^2 - 2484n + 432)}{64n^3(n-1)^3} > 0. \]

Subcase 2.2 $p_4 = 0$. It follows from Lemma 3.1 and the inequality (5.2) that
\[AZI(B) = AZI(E_n^{n-4,0,0,0}) \]
\[= r + (A_{3,p_1+3} + A_{3,p_3+2}) + A_{p_1+3,3} - A_{3,n-1} = 16 \]
\[\geq 0 + (A_{3,n-1} + A_{3,2}) + A_{p_1+3,3} - A_{3,n-1} = 16 \]
\[= A_{p_1+3,3} + 2 = 8 \geq 0 \]
with equality if and only if $p_1 = n - 4$ and $p_2 = p_3 = p_4 = 0$, that is, $B = E_n^{n-4,0,0,0}$. \qed

The bicyclic graph of order $n \geq 5$ with the minimum AZI index is characterized in the following theorem.

Theorem 5.5 Let $B \in \mathbb{B}_n$ and $B \not\cong D_{n,3,3,n-5}$, where $n \geq 5$. Then $AZI(D_{n,3,3,n-5}) < AZI(B)$.

Proof Note that $\mathbb{B}_n = \bigcup_{0 \leq p \leq n-4} \mathbb{B}_{n,p}$. Then by Corollary 5.3 and Lemma 5.4, it will suffice to prove that for $n \geq 5$, $AZI(D_{n,3,3,n-5}) < AZI(E_n^{n-4,0,0,0})$. It is obvious that
\[AZI(E_n^{n-4,0,0,0}) - AZI(D_{n,3,3,n-5}) = \frac{27(n-1)^3}{n^3} + \frac{(n-1)^3}{(n-2)^3} - 16 > 0. \]
This completes the proof of Theorem 5.5. \qed

Acknowledgements We thank the referees for their time and comments.

References