On the Atom-Bond Connectivity Index of Two-Trees

Siyong YU¹, Haixing ZHAO²∗, Yaping MAO², Yuzhi XIAO¹
1. School of Computer, Qinghai Normal University, Qinghai 810008, P. R. China;
2. Department of Mathematics, Qinghai Normal University, Qinghai 810008, P. R. China

Abstract The atom-bond connectivity (ABC) index of a graph G, introduced by Estrada, Torres, Rodriguez and Gutman in 1998, is defined as the sum of the weights \(\sqrt{\frac{1}{d_i} + \frac{1}{d_j} - \frac{2}{d_id_j}} \) of all edges \(v_iv_j \) of G, where \(d_i \) denotes the degree of the vertex \(v_i \) in G. In this paper, we give an upper bound of the ABC index of a two-tree G with \(n \) vertices, that is, \(ABC(G) \leq (2n - 4)\frac{n}{4} + \frac{\sqrt{2n-4}}{2} \). We also determine the two-trees with the maximum and the second maximum ABC index.

Keywords graph; two-trees; atom-bond connectivity; index

MR(2010) Subject Classification 05C35; 05C50

1. Introduction

Molecular descriptors play a significant role in chemistry, pharmacology, etc. Among them, topological indices have a prominent place [1]. On the topological indices, there are many publications [2–10]. One of the most important topological indices is the Randić index, which is aimed at use in the modeling of the branching of the carbon-atom skeleton of alkanes, introduced by Randić [11]. But a great variety of physico-chemical properties rest on factor rather than branching. In order to take this into consideration, Estrada et al. proposed a new index, known as the atom-bond connectivity (ABC) index [12] of graph G, which is defined as the sum of \(\sqrt{\frac{1}{d_i} + \frac{1}{d_j} - \frac{2}{d_id_j}} \) of all edges \(v_iv_j \) of G, where \(E(G) \) denotes the edge set and \(d_i \) denotes the degree of the vertex \(v_i \) of G, i.e.,

\[
ABC(G) = \sum_{v_iv_j \in E(G)} \sqrt{\frac{1}{d_i} + \frac{1}{d_j} - \frac{2}{d_id_j}}.
\]

The ABC index keeps the spirit of the Randić index and it provides a good model for the stability of branched alkanes as well as the strain of cycloalkanes [12,13]. In 2009, Furtula et al. [14] studied the mathematical properties of ABC index of trees and proved that the star...
tree has the maximal ABC value among all trees with $n \geq 2$ vertices. Bollobás and Erdős [15] found that the Randić index of a graph decreases when an edge with maximal weight is deleted. For the ABC index of graphs, Chen and Guo [16] proved that the ABC index of a graph decreases when any edge is deleted.

The ABC index has an important result, for example, Chen et al. [17] showed that among all n-vertex graphs with vertex connectivity k, the graph $K_k \lor (K_1 \cup K_{n-k-1})$ is the unique graph with maximum ABC index. Gutman and Furtula [18] showed that the structure of trees with a single high-degree vertex and smallest ABC is determined. Gan et al. [19] characterized the trees with given degree sequences, extremal w.r.t. the ABC index. Lin et al. [20] proved that for any degree sequence π, there exists a BFS-graph with minimal ABC index in $C(\pi)$ and the result is applicable to obtain the minimal value or lower bounds of ABC index of connected graphs. For more results on the ABC index, we refer to [21–30].

The two-tree is defined as follows.

Step 1. When $t = 0$, let $G_0 = K_2$, where K_2 (an edge) is a two-tree with 2 vertices.

Step 2. Let G_t be a two-tree generated at the t-th step. Then, G_{t+1} generated at the $(t+1)$ step is the graph obtained from G_t by adding a new vertex adjacent to the two end vertices of one edge. Clearly, G_{t+1} has $t+3$ vertices.

The two-tree has a very important structure in complex networks. It is known that the small-world Farey graph [31], fractal scale-free networks [32], the pseudofractal scale-free web [33] and the generalized Farey graph [34] are some special classes of two-tree networks.

Let S^*_n denote the graph obtained from the complete bipartite graph $K_{2,n-2}$ by adding one edge in the part with two vertices (see Figure 1). Let R^*_n denote the graph obtained from the graph S^*_{n-1} by adding a new vertex and two new edges adjacent to the new vertex such that one edge is incident to a vertex of degree 2 in S^*_{n-1} and the other is incident to a vertex of degree $n-2$ in S^*_{n-1} (see Figure 1).

In this paper, we investigate the ABC index of two-trees and obtain the following results.

Theorem 1.1 Let G be a two-tree with $n \geq 4$ vertices. Then

$$ABC(G) \leq (2n-4)\frac{\sqrt{2}}{2} + \frac{\sqrt{2n-4}}{n-1}$$

with the equality holding if and only if $G \cong S^*_n$.
Theorem 1.2 Let G be a two-tree with n ($n \geq 5$) vertices and $G \neq S^*_n$. Then

$$ABC(G) \leq ABC(R^*_n) = (n - 3)\sqrt{2} + \sqrt{\frac{2n - 5}{(n - 1)(n - 2)}} + \sqrt{\frac{n}{3(n - 1)}} + \sqrt{\frac{n - 1}{3(n - 2)}}.$$

2. Preliminary

In this section, we prove some lemmas, which is a preparation of our main results.

Observation 2.1 Let $g(d_1, d_2) = \sqrt{\frac{1}{d_1} + \frac{1}{d_2} - \frac{2}{d_1 d_2}}$. Then $g(2, d_2) = g(d_1, 2) = \frac{\sqrt{2}}{2}$.

Lemma 2.2 Let d_1, d_2 be two integers with $d_1, d_2 \geq 2$. Then the function $g(d_1, d_2) = \sqrt{\frac{1}{d_1} + \frac{1}{d_2} - \frac{2}{d_1 d_2}}$ is monotonic decreasing for d_i ($i = 1, 2$) and $g_{\text{max}}(2, d_2) = g_{\text{max}}(d_1, 2) = \frac{\sqrt{2}}{2}$.

Proof Note that $\frac{\partial g}{\partial d_i} = \frac{2 - d_i}{2d_i \sqrt{d_1 d_2 (d_1 + d_2 - 2)}}$. Since $d_1, d_2 \geq 2$, it follows that $\frac{\partial g}{\partial d_i} \leq 0$ and hence $g(d_1, d_2)$ is monotonic decreasing for d_i. Therefore, $g_{\text{max}}(2, d_2) = g_{\text{max}}(d_1, 2) = \frac{\sqrt{2}}{2}$. □

Lemma 2.3 Let x be an integer with $x \geq 3$. Then the function

$$f(x) = \sqrt{\frac{1}{x} + \frac{1}{x - 2} - \frac{2}{x^2}} - \sqrt{\frac{1}{x + 1} + \frac{1}{x + 1} - \frac{2}{(x + 1)^2}}$$

is monotonic decreasing for x.

Proof Observe that

$$f(x) = \sqrt{\frac{2}{x} - \frac{2}{x^2}} - \sqrt{\frac{2}{x + 1} - \frac{2}{(x + 1)^2}}$$

and

$$f'(x) = \frac{2 - x}{x^2 \sqrt{2x - 2}} - \frac{1 - x}{\sqrt{2x(x + 1)^2}} = \frac{x - 1}{\sqrt{2x(x + 1)^2}} - \frac{x - 2}{x^2 \sqrt{2x - 2}}.$$

Therefore, we have

$$\left(\frac{x - 1}{\sqrt{2x(x + 1)^2}}\right)^2 - \left(\frac{x - 2}{x^2 \sqrt{2x - 2}}\right)^2 = \frac{2x(-3x^5 + 9x^4 + 3x^3 - 9x^2 - 12x - 4)}{4x^5(x - 1)(x + 1)^4}.$$

Since the maximum root of $-3x^5 + 9x^4 + 3x^3 - 9x^2 - 12x - 4$ is less than 3, it follows that $-3x^5 + 9x^4 + 3x^3 - 9x^2 - 12x - 4 < 0$ for $x \geq 3$, which implies

$$\frac{x - 1}{\sqrt{2x(x + 1)^2}} - \frac{x - 2}{x^2 \sqrt{2x - 2}} < 0.$$

Hence $f'(x) < 0$ for $x \geq 3$, as desired. □

Lemma 2.4 Let x be an integer with $x \geq 3$. Then the function

$$f(x) = \sqrt{\frac{1}{x} + \frac{1}{x + 1} - \frac{2}{x(x + 1)}} - \sqrt{\frac{1}{x + 1} + \frac{1}{x + 1} - \frac{2}{(x + 1)(x + 1)}}$$

is monotonic decreasing for x.

Siyong YU, Haixing ZHAO, Yaping MAO and et al.
On the atom-bond connectivity index of two-trees

Proof Observe that
\[f'(x) = \frac{1}{2\sqrt{x+1}} \left(\frac{\sqrt{2}(x-1)}{x+1} - \frac{2x^2 - 2x - 1}{x\sqrt{x-1}} \right). \]
Let \(a = \sqrt{\frac{x+1}{x}} \) and \(b = \frac{x^2-2x-1}{x\sqrt{x-1}} \). Then \(a^2 - b^2 = \frac{-6x^4 + 16x^2 - 5x - 1}{x^2(x+1)(2x-1)} \) for \(x \geq 3 \). Since \(-6x^4 + 16x^2 - 5x - 1 < x^3(-6x+16) < 0 \), it follows that \(a^2 - b^2 < 0 \). Since \(a + b > 0 \), it follows that \(a - b < 0 \) and hence \(\frac{\sqrt{x+1}}{x} > \frac{x^2 - 2x - 1}{x\sqrt{2x-1}} < 0 \). So \(f'(x) < 0 \) and the result holds. □

Lemma 2.5 Let \(x \) and \(y \) be two integers with \(y \geq x \geq 2 \). Then
\[\sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} = \sqrt{\frac{1}{x+1} + \frac{1}{y+1} - \frac{2}{(x+1)(y+1)}} \geq \sqrt{\frac{y}{y+1} - \frac{2}{(y+1)^2}}. \]

Proof Notice that
\[\sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} = \sqrt{\frac{1}{x+1} + \frac{1}{y+1} - \frac{2}{(x+1)(y+1)}} = \sqrt{\frac{1}{y+1} - \frac{2}{(y+1)^2}}. \]
Set \(L(x,y) = \sqrt{\frac{y}{y+1} - \frac{2}{(y+1)^2}} \). When \(x = y \), one can easily check that \(L(x,y) = 0 \). We now suppose \(y > x \). From Lemma 2.2, we have \(\sqrt{\frac{y}{y+1} - \frac{2}{(y+1)^2}} > 0 \) and \(\sqrt{\frac{1}{y+1} - \frac{2}{(y+1)^2}} < 0 \). Since \(\sqrt{\frac{1}{y+1}} > \sqrt{\frac{1}{y+1}} \), it suffices to show that \(\sqrt{\frac{x+y-y^2}{x}} \geq 0 \) and \(\sqrt{\frac{y+y-y^2}{y}} < 0 \).

Consider the latter case. Observe that \(\frac{y+y-y^2}{y} = \frac{y-y^2}{y+1} < 0 \), which implies that \(\sqrt{\frac{y+y-y^2}{y}} < \sqrt{\frac{y+y-y^2}{y+1}} \).

Consider the former case. Note that \(\sqrt{\frac{x+y-y^2}{x}} - \sqrt{\frac{x+y-y^2}{y}} = \frac{y-x^2}{x(x+1)} \). Suppose that \(y = x + k \) and \(k \geq 1 \). If \(k \geq 2 \), then \(\frac{x+y-y^2}{x} \geq 0 \), so \(\frac{x+y-y^2}{y} < 0 \) \(\frac{x+y-y^2}{x} \geq 0 \), which implies that \(\sqrt{\frac{x+y-y^2}{x}} \geq 0 \) \((k \geq 2) \). From the above arguments, we have \(L(x,y) \geq 0 \) for \(k \geq 2 \). If \(k = 1 \), then \(L(x,y) = \sqrt{\frac{2x-1}{x(x+1)}} - \sqrt{\frac{2y-1}{y(y+1)}} \). By Lemma 2.4, we can get \(L(x,y) > 0 \). So, we have
\[\sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} \geq \sqrt{\frac{y}{y+1} - \frac{2}{(y+1)^2}}, \]
□

Lemma 2.6 Let \(x \) and \(y \) be two integers with \(x \geq 3, y \geq 2 \). Then the function
\[f(x,y) = \sqrt{\frac{1}{x-1} + \frac{1}{y} - \frac{2}{(x-1)y}} \]
is monotonic increasing for \(y \).

Proof For fixing \(x \), it follows that \(\frac{\partial f}{\partial y} = -\frac{x^2}{2\sqrt{y^3} \sqrt{3x+y-2}} - \frac{x-3}{2\sqrt{y^3} \sqrt{3x+y-2}} \frac{x-5}{2\sqrt{y^3} \sqrt{3x+y-2}} = \frac{1}{2\sqrt{y^3}} \left(\sqrt{3x+y-2} - \frac{3x+y-2}{2\sqrt{y^3}} \right) \). ***
Note that \(\frac{x^2 - 4}{\sqrt{x - 1} \sqrt{x + y - 3}} \). By computation, we have

\[
0 < (x^2 - x - 4)y + 2(x - 2)(x - 3) = (x - 2)^2(x + y - 3) - (x - 3)^2x(x + y - 2),
\]

which leads to

\[
\frac{x - 2}{\sqrt{x \cdot x + y - 2}} > \frac{x - 3}{\sqrt{x - 1 \cdot x + y - 3}}.
\]

That is, \(\frac{\partial f}{\partial y} > 0 \), which implies that the lemma is true. □

Lemma 2.7 Let \(x, y \) be two integers with \(x \geq 3, y \geq 2 \). Then

\[
f(x, y) = \sqrt{\frac{1}{x - 1} + \frac{1}{y} - \frac{2}{(x - 1)y}} - \sqrt{\frac{1}{x + 1} + \frac{1}{y} - \frac{2}{xy}}
\]

is monotonic decreasing for \(x \).

Proof Note that

\[
\frac{\partial f}{\partial x} = \frac{y - 2}{2x \sqrt{y(x + y - 2)}} - \frac{y - 2}{2(x - 1) \sqrt{(x - 1)y(x + y - 3)}}.
\]

Since

\[
(x - 1) \sqrt{(x - 1)y(x + y - 3)} < x \sqrt{xy(x + y - 2)},
\]

we have

\[
\frac{y - 2}{x \sqrt{xy(x + y - 2)}} < \frac{y - 2}{(x - 1) \sqrt{(x - 1)y(x + y - 3)}}.
\]

Hence \(\frac{\partial f}{\partial x} < 0 \), as desired. □

Lemma 2.8 Let \(y \) be an integer with \(y \geq 6 \). Then the function

\[
f(y) = \sqrt{\frac{1}{y - 1} + \frac{1}{y} - \frac{2}{y^2}} - \sqrt{\frac{1}{y + 1} + \frac{1}{y} - \frac{2}{y(y + 1)}}
\]

is monotonic decreasing for \(y \).

Proof Note that

\[
f'(y) = \frac{2 - y}{y^2 \sqrt{2y - 2}} - \frac{2y + 1 - 2y^2}{2y^2 (x + 1)^{\frac{3}{2}} \sqrt{2y - 2}} \leq \frac{2 - y}{y^2 \sqrt{2y - 2}} - \frac{2y + 1 - 2y^2}{2y^2 (y + 1)^{\frac{3}{2}} \sqrt{2y - 2}}
\]

\[
\leq \frac{2 - y}{y^2 \sqrt{2y - 2}} + \frac{2y^2 - 2y}{2y^2 (y + 1)^{\frac{3}{2}} \sqrt{2y - 2}} = \frac{1}{y^2 \sqrt{2y - 2}} \left(\frac{y^2 - y}{(y + 1)^{\frac{3}{2}}} - \frac{y - 2}{\sqrt{y}} \right).
\]

Let \(a = \frac{x^2 - y}{(y + 1)^{\frac{3}{2}}} \) and \(b = \frac{x - y}{\sqrt{y}} \). Then \(a^2 - b^2 = \frac{y^4 + 6y^3 - y^2 - 8y - 4}{y(y + 1)^{\frac{3}{2}}} \). For \(y \geq 6 \), \(-y^4 + 6y^3 - y^2 - 8y - 4 \leq 0 \), so we have \(a^2 - b^2 = \frac{y^4 + 6y^3 - y^2 - 8y - 4}{y(y + 1)^{\frac{3}{2}}} < 0 \), which implies that \(f'(y) < 0 \), as desired. □

Lemma 2.9 Let \(x \) be an integer with \(x \geq 2 \). Then the function

\[
f(x) = \sqrt{\frac{1}{x} + \frac{1}{x + 1} - \frac{2}{x(x + 1)}} - \sqrt{\frac{1}{x + 1} + \frac{1}{x} - \frac{2}{(x + 1)(x + 2)}}
\]
Lemma 2.10 \textit{Let} \(x, y\) \textit{be two integers with} \(y \geq x \geq 3\). \textit{Then}

\[
\sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} < \sqrt{\frac{1}{x+1} + \frac{1}{y+1} - \frac{2}{(x+1)(y+1)}}.
\]

\textbf{Proof} \textit{Set} \(M = \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}}\) \textit{and} \(N = \sqrt{\frac{1}{x+1} + \frac{1}{y+1} - \frac{2}{(x+1)(y+1)}}\). \textit{Suppose} \(y = x\). \textit{From Lemma 2.8, we have} \(M - N > 0\) \textit{for} \(y \geq 6\). \textit{When} \(y = 3, 4, 5\), \textit{one can easily check that} \(M > N\).

\textit{Suppose} \(y > x\). \textit{Note that}

\[
M - N = \sqrt{\frac{1}{y} \left(\frac{x+y-2}{x} - \frac{2y-1}{y+1} \right)} - \frac{1}{y+1} \left(\frac{x+y}{x} - \frac{2y+1}{y+2} \right).
\]

\textit{Let} \(y = x + k\) \((k \geq 1)\). \textit{From Lemma 2.2, we have} \(\frac{1}{y} \left(\frac{x+y-2}{x} - \frac{2y-1}{y+1} \right) > 0\) \textit{and} \(\sqrt{\frac{1}{y} \left(\frac{x+y-2}{x} - \frac{2y+1}{y+2} \right)} > 0\). \textit{Since} \(\sqrt{\frac{x+y-2}{x}} > \sqrt[3]{\frac{1}{y+1}}\), \textit{it suffices to show that} \(\frac{x+y-2}{x} \geq \frac{x+y}{x+1}\) \textit{and} \(\sqrt{\frac{2y+1}{y+2}} > \sqrt[3]{\frac{2y-1}{y+1}}\).

\textit{Consider the latter case. Observe that} \(\frac{2y-1}{y+1} - \frac{2y+1}{y+2} = \frac{-3}{(y+1)(y+2)} < 0\), \textit{that is,} \(\sqrt{\frac{2y-1}{y+1}} - \sqrt[3]{\frac{2y+1}{y+2}} < 0\), \textit{as desired.}

\textit{Consider the former case. For} \(y \geq x + 2\), \(\frac{x+y-2}{x} - \frac{x+y}{x+1} = \frac{y-x-2}{x(x+1)} \geq 0\); \textit{for} \(y = x + 1\), \textit{by Lemma 2.9 we have} \(M > N\).

\textit{From above arguments, we know that} \(M > N\). \(\square\)

Lemma 2.11 \textit{Let} \(x, y\) \textit{be two integers with} \(y \geq x \geq 3\). \textit{Then}

\[
\sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} = \sqrt{\frac{1}{x+1} + \frac{1}{y+1} - \frac{2}{(x+1)(y+1)}}
\]

is monotonic decreasing for \(x\).
where the equality holds if and only if \(y = x + 1 \).

Proof Set \(M' = \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} - \sqrt{\frac{1}{x+1} + \frac{1}{y+1} - \frac{2}{(x+1)(y+1)}} \) and \(N' = \sqrt{\frac{1}{y-1} + \frac{1}{y} - \frac{2}{(y-1)y}} - \sqrt{\frac{1}{y+1} + \frac{1}{y} - \frac{2}{y(y+1)}} \).

Note that

\[
M' - N' = \frac{1}{y} \left(\sqrt{\frac{x+y-2}{x}} - \sqrt{\frac{2y-3}{y-1}} \right) - \frac{1}{y+1} \left(\sqrt{\frac{x+y}{x+1}} - \sqrt{\frac{2y-1}{y}} \right).
\]

Since \(y \geq x + 1 \), we have

\[
\sqrt{\frac{x+y-2}{x}} > \sqrt{\frac{2y-3}{y-1}} > 0 \quad \text{and} \quad \sqrt{\frac{x+y}{x+1}} > \sqrt{\frac{2y-1}{y}} > 0,
\]

where the equality holds if and only if \(y = x + 1 \). Since \(\frac{1}{y} > \frac{1}{y+1} \), it suffices to show that

\[
\sqrt{\frac{x+y-2}{x}} \geq \sqrt{\frac{x+y-2}{x}} \quad \text{and} \quad \sqrt{\frac{2y-3}{y-1}} > \sqrt{\frac{2y-1}{y}}.
\]

A similar argument of Lemma 2.10, the lemma is true. \(\Box \)

3. Proofs of main results

We are now in a position to prove our main results.

Proof of Theorem 1.1 We prove this theorem by induction on \(n \). Let \(T_n \) be a two-tree with \(n \) vertices.

For \(n = 4 \), the two-tree \(T_n \) is a unique graph obtained from the complete graph of order 4 by deleting one edge. Clearly, \(ABC(T_4) = 2\sqrt{2} + \frac{2}{3} \sqrt{3} = (2n - 4) \frac{2x}{3} + \frac{\sqrt{3n-3}}{n-1} \), as desired.

Suppose that the result holds for all integers smaller than \(n \). Pick up one vertex of degree 2 from the graph \(T_n \), say \(w \). Observe that \(T_n - w \) is a two-tree of order \(n - 1 \). By induction hypothesis, \(ABC(T_n - w) \leq ABC(S_{n-1}^*) \) with the equality holding if and only if \(T_n - w \cong S_{n-1}^* \). Now we prove that \(ABC(T_n) \leq ABC(S_n^*) \).

Let \(u \) and \(v \) be two vertices adjacent to the vertex \(w \) in \(T_n \). Let \(d_{T_n}(u) = x \) and \(d_{T_n}(v) = y \), where \(d_{T_n}(u) \) denotes the degree of the vertex \(u \) in \(T_n \). Clearly, \(3 \leq x \leq n - 1 \) and \(3 \leq y \leq n - 1 \). Without loss of generality, let \(y \geq x \geq 3 \). Notice that

\[
ABC(T_n) \leq ABC(T_n - w) + \sqrt{2} - \left(\sqrt{\frac{1}{x-1} + \frac{1}{y-1} - \frac{2}{(x-1)(y-1)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} \right)
\]

\[
\leq ABC(S_{n-1}^*) + \sqrt{2} - \left(\sqrt{\frac{1}{x-1} + \frac{1}{y-1} - \frac{2}{(x-1)(y-1)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} \right).
\]

Set

\[
M'' = \sqrt{\frac{1}{x-1} + \frac{1}{y-1} - \frac{2}{(x-1)(y-1)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}}
\]

and

\[
N'' = \sqrt{\frac{1}{n-2} + \frac{1}{n-2} - \frac{2}{(n-2)^2}} - \sqrt{\frac{1}{n-1} + \frac{1}{n-1} - \frac{2}{(n-1)^2}}.
\]
Then
\[
M'' - N'' = \sqrt{\frac{1}{x-1} + \frac{1}{y-1} - \frac{2}{(x-1)(y-1)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}} \\
\geq \sqrt{\frac{1}{x-1} + \frac{1}{y-1} - \frac{2}{(x-1)(y-1)}} - \sqrt{\frac{1}{n-2} + \frac{1}{n-2} - \frac{2}{(n-2)^2}} \\
\geq \sqrt{\frac{1}{x-1} + \frac{1}{y-1} - \frac{2}{(x-1)(y-1)}} - \sqrt{\frac{1}{n-1} + \frac{1}{n-1} - \frac{2}{(n-1)^2}} \\
= (\sqrt{\frac{1}{y-1} + \frac{1}{y-1} - \frac{2}{(y-1)^2}} - \sqrt{\frac{1}{y} + \frac{1}{y} - \frac{2}{y^2}}) \quad \text{(by Lemma 2.3)}
\]
\geq 0 \quad \text{(by Lemma 2.5)}.

Hence
\[ABC(T_n)\]
\[\leq ABC(S_{n-1}^*) + \sqrt{2} - (\sqrt{\frac{1}{x-1} + \frac{1}{y-1} - \frac{2}{(x-1)(y-1)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}})\]
\[\leq ABC(S_{n-1}^*) + \sqrt{2} - (\sqrt{\frac{1}{n-2} + \frac{1}{n-2} - \frac{2}{(n-2)^2}} - \sqrt{\frac{1}{n-1} + \frac{1}{n-1} - \frac{2}{(n-1)^2}})\]
\[= ABC(S_n^*),\]
where the equality holds if and only if \(T_n - w = S_{n-1}^*\) and \(x = y = n - 1\), which completes the proof. \(\square\)

Proof of Theorem 1.2 We prove this theorem by induction on \(n\). Let \(T_n\) be a two-tree with \(n\) vertices and \(T_n \neq S_n^*\).

For \(n = 5\), one can see that \(T_5 \neq S_4^*\) or \(T_5 = R_5^*\). Since \(T_n \neq S_n^*\), we have \(T_n = R_n^*\). One can see that \(ABC(T_n) = 2\sqrt{2} + \frac{\sqrt{10}}{2} = (n-3)\sqrt{2} + \sqrt{\frac{2n-5}{(n-1)(n-2)}} + \sqrt{\frac{n}{2(n-1)}} + \sqrt{\frac{n-1}{3(n-2)}}\), as desired.

Suppose that the result holds for any integer smaller than \(n\). Choose one vertex \(w\) of degree 2 from the graph \(T_n\) such that \(T_n - w \neq S_{n-1}^*\). By induction hypothesis, \(ABC(T_n - w) \leq ABC(R_{n-1}^*)\). Our aim is to prove that \(ABC(T_n) \leq ABC(R_n^*)\).

Let \(u\) and \(v\) be two vertices adjacent to the vertex \(w\) in \(T_n\). Then there must exist a vertex \(p\) with \(d_{T_n-w}(p) \geq 3\) (otherwise, \(T_n - w \cong S_{n-1}^*\)). Let \(d_{T_n}(u) = x, d_{T_n}(v) = y\) and \(d_{T_n}(p) = a\). Then \(3 \leq x, y, a \leq n - 1\). Let \(\max\{x, y, a\} = y\). Then \(y \leq n - 1\) and \(\max\{x, a\} \leq n - 2\) (Otherwise \(T_n = S_n^*\)).

By Lemma 2.2, we have that
\[ABC(T_n)\]
\[\leq ABC(T_n - w) + \sqrt{2} - (\sqrt{\frac{1}{x-1} + \frac{1}{a} - \frac{2}{a(x-1)}} - \sqrt{\frac{1}{x} + \frac{1}{a} - \frac{2}{xa}})\]
\[
\left(\sqrt{\frac{1}{y - 1} + \frac{1}{a} - \frac{2}{a(y - 1)}} - \sqrt{\frac{1}{y} + \frac{1}{a} - \frac{2}{ya}}\right) - \\
\left(\sqrt{\frac{1}{x - 1} + \frac{1}{y - 1} - \frac{2}{(y - 1)(x - 1)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}}\right) \\
\leq ABC(R_{n-1}^*) + \sqrt{2} - \left(\sqrt{\frac{1}{n - 3} + \frac{1}{3} - \frac{2}{3(n - 3)}} - \sqrt{\frac{1}{n - 2} + \frac{1}{3} - \frac{2}{3(n - 2)}}\right) - \\
\left(\sqrt{\frac{1}{n - 2} + \frac{1}{3} - \frac{2}{3(n - 2)}} - \sqrt{\frac{1}{n - 1} + \frac{1}{3} - \frac{2}{3(n - 1)}}\right) - \\
\left(\sqrt{\frac{1}{n - 2} + \frac{1}{3} - \frac{2}{3(n - 2)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}}\right)\text{ (by Lemma 2.6)} \\
\leq ABC(R_{n-1}^*) + \sqrt{2} - \left(\sqrt{\frac{1}{n - 3} + \frac{1}{3} - \frac{2}{3(n - 3)}} - \sqrt{\frac{1}{n - 2} + \frac{1}{3} - \frac{2}{3(n - 2)}}\right) - \\
\left(\sqrt{\frac{1}{n - 2} + \frac{1}{3} - \frac{2}{3(n - 2)}} - \sqrt{\frac{1}{n - 1} + \frac{1}{3} - \frac{2}{3(n - 1)}}\right) - \\
\left(\sqrt{\frac{1}{n - 2} + \frac{1}{3} - \frac{2}{3(n - 2)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}}\right)\text{ (by Lemma 2.7)}.
\]

We now give a lower bound of \(\sqrt{\frac{1}{x - 1} + \frac{1}{y} - \frac{2}{(y - 1)(x - 1)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}}\).

For \(x \leq y \leq n - 2\), by Lemmas 2.9 and 2.10 we have
\[
\left(\sqrt{\frac{1}{n - 3} + \frac{1}{n - 2} - \frac{2}{(n - 2)(n - 3)}} - \sqrt{\frac{1}{n - 1} + \frac{1}{n - 2} - \frac{2}{(n - 1)(n - 2)}}\right) > \\
\left(\sqrt{\frac{1}{n - 1} + \frac{1}{n - 2} - \frac{2}{(n - 1)(n - 2)}} - \sqrt{\frac{1}{n - 1} + \frac{1}{n - 2} - \frac{2}{(n - 1)(n - 2)}}\right) > 0.
\]

For \(y = n - 1\) and \(y \geq x + 1\), by Lemmas 2.9 and 2.11 we have
\[
\left(\sqrt{\frac{1}{n - 3} + \frac{1}{n - 2} - \frac{2}{(n - 2)(n - 3)}} - \sqrt{\frac{1}{n - 1} + \frac{1}{n - 2} - \frac{2}{(n - 1)(n - 2)}}\right) \geq \\
\left(\sqrt{\frac{1}{n - 1} + \frac{1}{n - 2} - \frac{2}{(n - 1)(n - 2)}} - \sqrt{\frac{1}{x} + \frac{1}{y} - \frac{2}{xy}}\right) \geq 0.
\]
where the equality holds if and only if \(y = n - 1 \) and \(x = n - 2 \). Therefore,

\[
ABC(T_n) \\
\leq ABC(R^*_{n-1}) + \sqrt{2} - \left(\sqrt{\frac{1}{3} + \frac{1}{n-3} - \frac{2}{3(n-3)}} - \sqrt{\frac{1}{3} + \frac{1}{n-2} - \frac{2}{3(n-2)}} \right) \\
\left(\frac{1}{n-3} + \frac{1}{n-2} - \frac{2}{(n-2)(n-3)} - \frac{1}{n-1} + \frac{1}{n-2} - \frac{2}{(n-1)(n-2)} \right) \\
= ABC(R^*_n),
\]

where the equality holds if and only if \(T_n - w = R^*_{n-1}, \ a = 3, \ x = n - 2 \) and \(y = n - 1 \), which completes the proof.

4. Concluding Remark

In this paper, we investigated \(ABC \) index of a two-tree, which has a very important structure in complex networks.

From Theorems 1.1 and 1.2, we determine the two-trees with the first two largest \(ABC \) index, but the two-trees with the minimum \(ABC \) index are still unknown, this seems to be a difficult problem. For the minimum \(ABC \) index, we conjecture the following result holds: For a two-tree \(G \) on \(n \ (n \geq 6) \) vertices, \(ABC(G) \geq 2\sqrt{2} + \frac{2\sqrt{15}}{3} + (2n-11)\frac{\sqrt{6}}{4} \). The graph attaining this bound is shown in Figure 2.

Acknowledgements The authors are very grateful to the referees and Professor I. Gutman for their valuable comments and suggestions, which helped to improve the presentation of this paper.

References

