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Abstract In this paper, a new subclass NQ*’ (m, A, p) of analytic and bi-univalent functions
in the open unit disk U is defined by salagean operator. We obtain coefficients bounds |az| and
las| for functions of the class. Moreover, we verify Brannan and Clunie’s conjecture |az| < v/2
for some of our classes. The results in this paper extend many results recently researched by
many authors.
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1. Introduction

In this paper, we denote by A the class of functions of the form:
f(z) =2+ Zak+12k+1 (1.1)
k=1

which are analytic in the open unit disk U = {z € C : |z] < 1}. Let S denote the class of
functions in class A which are univalent in U. For f(z) € A, Salagean operator is defined by

D°f(z) = f(2),
D'f(z) = Df(2) = 2f'(2),

D™ f(z) = D(D™1f(z)), meN={1,2,...}.

If f(2) € A is given by (1.1), then we see that

D" f(z) =z+ Y (14+n)"an12"", meNy=NU{0}.

n=1

It is well known that every function f € S has an inverse g = f~!, which is defined by

F7HfR) =2 z€T,
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FO W) = w, [w] < ro(£); mo(f) > i

In fact, the inverse function f~! is given by
g(w) = fHw) = w — asw? + (242 — az)w® — (5a3 — Hagas + ag)w* + - - - . (1.2)

A function f € S is said to be bi-univalent in U if both f and f~! are univalent in U. We denote
by ¥ the class of all bi-univalent functions in U given by (1.1). In 1967, Lewin [1] first introduced
the class ¥ of bi-univalent functions and showed that |ag| < 1.51 for every f € 3. Subsequently,
Brannan and Clunie [2] conjectured that |ag| < V2 for f € . Later, Netanyahu [3] proved
that max|as| = § for f € X. In 2010, Srivastava et al. [4] introduced subclasses of bi-univalent

function Hx(a) and Hx(S), and obtained non-sharp estimates on the coefficients |az| and |as|.

Definition 1.1 ([4]) A function f(z) given by (1.1) is said to be in the class Hx(«) if the

following conditions are satisfied:

feX and |afgf/(z)|<a7ﬂ» 0<a<l;zel,
Iargg’(w)|<%, 0<a<lwel,

where the function g is defined by (1.2).

Definition 1.2 ([4]) A function f(z) given by (1.1) is said to be in the class Hx(5) if the

following conditions are satisfied:
fex, and R(f'(z))>B, 0<B<1;2z€T0,
R(g'(w)) >, 0<p<L; wel,

where the function g is defined by (1.2).
Frasin and Aouf [5] introduced the following subclasses of the bi-univalent function class ¥

and obtained non-sharp estimates on the coeflicients |as| and |as].

Definition 1.3 ([5]) A function f(z) given by (1.1) is said to be in the class Bs(a, ) if the

following conditions are satisfied:

feX and 4arg((1—/\)@+)\f'(z))|<%, O<a<l;A>1;2€0,
|arg((1f/\)¥+)\g’(w))|<%, O<a<l;A>1Lwel,

where the function g is defined by (1.2).

Definition 1.4 ([5]) A function f(z) given by (1.1) is said to be in the class N& (8, \) if the
following conditions are satisfied:

f(2)

fexy and %((1—)\)7+)\f’(2))>ﬁ, 0<B<L;A>1;2z€U,

8‘f((1—>\)¥+/\g’(w)))>6, 0<B<LA>Lp>0;wel,
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where the function g is defined by (1.2).
Xu et al. [6] introduced an interesting general subclass Bg’p (M) of the analytic function class

A, and obtained the coefficients estimates on |az|, |ag| given by (1.1).
Definition 1.5 ([6]) Let the functions h, p : U — C be so constrained that
min {R(h(z)), R(p(z))} >0, z€U and h(0)=p(0) = 1.

A function f(z), defined by (1.1), is said to be in the class Bi” (\) if the following conditions are
satisfied:

fex and (17)\)@+)\f’(z)€h(U), z €U,
(1—)\)@—%)\9'(111) ep(U), wel,

where the function g is defined by (1.2).
Recently, Caglar et al. [7] introduced the following two subclasses of the bi-univalent function

class ¥ and obtained non-sharp estimates on coefficients |az| and |as|.

Definition 1.6 ([7]) A function f(z) given by (1.1) is said to be in the class N (a, A) if the
following conditions are satisfied:
am

f€Y and |arg((1— /\)(@)“ Jr)\f/(z)(@)#il)} <5

5 O<a<l;A>1,u>0;2z€0,

I Y [ e S S T

where the function g is defined by (1.2).

Definition 1.7 ([7]) A function f(z) given by (1.1) is said to be in the class N& (8, \) if the

following conditions are satisfied:

fex and R((1- A)(@)“ + Af’(z)(@)“—l) >B, 0<B<L;A>1; u>0;2€T,

R((1 - NED g @)Dyt 5 5, 0<p<1AZ Lp0weD,

where the function g is defined by (1.2).
Following Caglar et al.” work, Srivastava et al. [8] introduced the following subclasses of the

bi-univalent function class 3 and also obtained non-sharp estimates on |as| and |as|.

Definition 1.8 ([8]) Let the functions h, p : U — C be so constrained that
min {R(h(z)), R(p(z))} >0, z€U and h(0)=p(0) = 1.

A function f(z), defined by (1.1), is said to be in the class J\/’g’p()\,u)()\ > 1;u > 0) if the

following conditions are satisfied:

fe€X and (1-— )\)(@)“ + )\fI(Z)(7

(1 -0y g @) @yt e pw), wew,
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where the function g is defined by (1.2).
Motivated by these papers, we introduce and investigate certain new subclass J\/'g Plm, A, p)
of the analytic function class A defined by Salagean operator. Further we verify Brannan and

Clunie’s conjecture |ag| < V/2 for some of the subclass.
Definition 1.9 Let the functions h, p : U — C be so constrained that
min {R(h(2)), R(p(z))} >0, z€U and h(0)=p(0) = 1.

A function f(z), defined by (1.1), is said to be in the class ./\/’X}Jl’p(m7 A, ) if the following conditions

are satisfied:

fes and (1—/\)(Dmf(z))“+>\(Dl;n+1f(z))(Dmf(Z))”eh(U), ceU,  (13)
mf(z) z
D™mg(w),, D™ Hlg(w), D™g(w).,

(- 2Ly B B e ), e, (1)

where m € No, A > 1, > 0 and the function g is defined by (1.2).

Remark 1.10 If we let h(z) = p(z) = (£2)* (0 < a < 1), then the class NP (m, A, 1) reduces
to the new class denoted by Ng(m, A, u, ) which is the subclass of the functions f(z) € %

satisfying )
D™f(2) . D" (2), Df(2)\ 0 _ om
(1= N2 4 M D] <
O<a<l; A>1;, p>0; z€U,
D™g(w)\, , D" g(w), Dmg(w), .\ _ o
Jang(1 = N2+ A L2 <

O<a<<l; A>1;, p>0; wel,

where the function g is defined by (1.2).
(i) For p=1,A=1,m =0, the class reduces to Hx(«).
(ii) For pu = 1,m = 0, the class reduces to Bg(a, A).
(iii) For m = 0, the class reduces to N&(a, \).

reduces to the new class denoted by Ns(m, A, i, 3) which is the subclass of the functions f(z) € &

Remark 1.11 If we let h(z) = p(z) = % (0 < B < 1), then the class N&F(m, A, 1)

satisfying
mf(z mElf(z mf(z
R e - DN
0<B<L,A>1L p>0; zeT,
™ g (w m+1 w ™ a(w
R((1 - Ny I PR g,

0<B<LAZ1L p>0; wel,

where the function g is defined by (1.2).
(i) For p=1,A=1,m =0, the class reduces to Hx(8).
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(ii) For p = 1,m = 0, the class reduces to Bx (8, \).
(iii) For m = 0, the class reduces to N& (53, \).

In order to derive our main results, we shall need the following lemma.

Lemma 1.12 ([9]) If the function h(z) € P, then |c;| < 2 for each k, where P is the family of
all functions h, analytic in U, for which R{h(z)} > 0, where

h(k) (0)
ko

h(z)=1+ciz+c2® 4+ -+t + -, o =

2. Coeflicient estimates

In this section, we state and prove our general results involving the bi-univalent function

class Ng’p(m, A, i) given by Definition 1.4.

Theorem 2.1 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be
in the function class N{P(m, A, ). Then

(O + [p'(0) 2 ¢ [ (0)] + |p"(0)] ) 2.1)
22mFL 4+ X)2 T\ 2(p+20) |22 (n— 1) +2- 37| S '

las| < min{

W' (0)]> +[p'(0)* , [h"(0)] + [p"(0)]

22t (1 + )2 4-3m(p+2X)

|22m(u—1)+4-3m|\h”(0)|+22mlu—1\lp”(0)|}
4 3m (4 20227 (1 — 1) + 2 - 37| '

lag| < min {

(2.2)

Proof First of all, we write the argument inequalities in (1.5) and (1.6) in their equivalent forms

as follows:
D™ f(2),, D™t f(z), D™ f(2),,
=ML N Dy = hio), e, (23)
D™mg(w),, D™ g(w), D™g(w),,
(1= N2y A L (L = p(w), w e (24)

respectively, where h(z) and p(w) satisfy the conditions of Definition 1.9. Furthermore, the

functions h(z) and p(w) have the following Taylor-Maclaurin series expansions:
h(z) =1+ hiz +hoz? + -+, (2:5)
p(w) =1+ prw +pow® + - -, (2.6)

respectively. Now, equating the coefficients in (2.3) and (2.4) with (1.4), (2.5), (2.6), we have

2™ (4 Nag = hy, (2.7)
3™ (4 2\)as + 22 — 1) (1 + 2N\)a2 = ho, (2.8)
—2"(p+ Naz = pi, (2.9)

1
—8"(p+2\)as + (p+20)[2- 37 + 5 3°" (= ]ag = pa. (2.10)
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From (2.7) and (2.9), we obtain

hy = —p1, (2.11)
22mFL (1 + X)%a2 = b3 4 pl. (2.12)

From (2.8) and (2.10), we find that
(4 20227 (4 — 1) + 23703 = hy + pa. (2.13)

Therefore, we find from the equations (2.12) and (2.13) that

o] = \/ R _ wh'mmﬂp'(ov (214

22m+1(u+)\)2 — 2277;+1(M+)\)2 ’

1h2 1 pl (O] + p(0)]
N = : 2.15
las| \/(u+2)\)|22m(ﬂ—1)+2-3m| =\ 2(p+ 2022 (n—1) +2- 37| ( )

respectively. So we get the desired estimate on the coefficient |az| as asserted in (2.1).
Next, in order to find the bound on the coefficient |ag|, we subtract (2.10) from (2.8). We
get
2-3™(u+2\)az — 2 - 3™(u + 2\)ai = hy — pa. (2.16)

Upon substituting the value of a3 from (2.12) into (2.16), it follows that

e — hi + pi ha — p2
ST 2mAT (4 A2 2.3m (4 20
We thus find that ) )
h/ / h// 1/
g < FOE A+ O | 170)] +p(0) o

On the other hand, upon substituting the value of a3 from (2.13) into (2.16), it follows that
ha + p2 i ha — p2
(it 2n22m (- 1) +2-37]  2-3m(u+2))
22 (p—1) +4-3™]hy — 22 (u— 1)p>
2-3m(p+2X0)[22m (p — 1) + 2 - 3™]

az =

Consequently, we have

|22™ (= 1) +4 - 3™[[R"(0)] + 2% |pu — 1][p" (0)]
4-3m(u+ 202 (u — 1) + 2- 3]

las| < (2.18)

This evidently completes the proof of Theorem 2.1. [J
We note that for h(z) € P, it is easy to obtain that

W(0)] <2, [p'(0)] <2

from Lemma 1.12. So if we let 4+ A > v/2, we can easily obtain the following Corollary 2.2 from
Theorem 2.1.

Corollary 2.2 If f given by (1.1) is in the class N&?(m, A, ) for i+ A > /2, then |as| < v/2.
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Proof For ju+ A > +/2, relation (2.1) indicates that

W/ (0)]* + [p(0)[? 8 1
< < < V2.
22m+1(‘u+)\)2 — 22m+1(lu+)\)2 — 2m71('u+)\) — f

Therefore, we complete the proof. [J

From Corollary 2.2, we verify Brannan and Clunie’s conjecture |as| < v/2 for some of our
class which satisfies the condition p + A > V2.

If we let h(z) = p(z) = (32)* (0 < @ < 1) or h(z) = p(z) = TE=20% (0 < § < 1), then

we can obtain Theorems 2.3 and 2.4.

Theorem 2.3 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be in
the function class N (m, A\, i, ). Then

. 20 4o
la2] < mm{zm(m )’ \/(u N (= 1) £ 237 - (2.19)
4a? 202 [1227(p— 1) +4- 3™ + 22|y — 1/]a?
22m(p 4 X)? + 3m(p+2X)" 3™ (4 2X)|22m(u— 1)+ 2- 3™
Theorem 2.4 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be
in the function class Nx(m, A, u, 3). Then

b (2:20)

las] < min {

Ly 20-0) 41— P)
laz| < mm{Qm(u-i- )\)’\/(M‘*‘ V227 (i — 1) + 237 }, (2.21)
L A1 -p)? 20=p) [[22"(p—1)+4-3"]+22"|p—1](1 - B)
sl = mm{?m(wr)\)? 3m(p+2)) 3 (4 20)[227 ( — 1) + 2 - 3™ Jo (222)

3. Corollaries and consequences
By setting m = 0, in Theorem 2.1, we get Corollary 3.1 below.

Corollary 3.1 ([8]) Let the function f(z ) given by the Taylor-Maclaurin series expansion (1.1)

be in the bi-univalent function class J\/ . Then
[ (0)[* + |p'(0 Ih” )|+ 1p"(0)]
< 3.1
a2 mm \/ 2(p + \)2 2(p + 2))( u+1)} (3.1)
h/ 2 2 h// // 3 h// 1 /! O
(u+A) (u+2A) A(p+20)(p+ 1)

There are many results generated by Corollary 3.1, for detail, see [4,6,7,10-12].
If m = 0 in Theorems 2.3 and 2.4, we get Corollaries 3.2 and 3.3 below.

Corollary 3.2 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be

in the bi-univalent function class N5 (a, \). Then

200 402 }
pAX (22 (p+1)

laz| < min{ (3.3)
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2 C1Da?
las| < min{( 4o 202 (p+3+|p—1)a ) (3.4)

+ )
w42 22X (422 ) (p+1)
Corollary 3.3 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be
in the bi-univalent function class N& (3, A). Then

20-8) [ a0-p)
AP 20-8) (43t 1)(-B)
ol AL T e e (30

If m =0, =1 in Theorems 2.2 and 2.3, we get Corollaries 3.4 and 3.5 below.

Corollary 3.4 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be

in the bi-univalent function class Bs(«, \). Then

20 [ 202
< 1 [ .
|as| mln{1 v\ Toax }7 (3.7)

202
142X
Corollary 3.5 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be

in the bi-univalent function class Bx (3, A). Then

las| < (3.8)

. f200-p) [40-5)
|a2|§m1n{ o\ 202y }, (3.9
2(1-p)
laz| < T (3.10)

If m=0,u4=1,A=1in Theorems 2.2 and 2.3, we get Corollaries 3.6 and 3.7 below.

Corollary 3.6 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be

in the bi-univalent function class Hx(a). Then

|a2| < min {a, \/ga}, (3.11)

2

Corollary 3.7 Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be
in the bi-univalent function class Hx (). Then
2(1 —
las| < min{l -8, % },
2(1-5)
T

(3.13)

laz| < (3.14)

4. Conclusions

In this paper, a general subclass N;’p (m, A\, 1) of the analytic function class A involving

Salagean operator D™ in the open unit disk U was introduced. The class extends many familiar
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subclasses of bi-univalent functions. We have derived estimates on the first two Taylor-Maclaurin
coefficients |as|,|as| for functions belonging to the class. Moreover, we verify Brannan and
Clunie’s conjecture |az| < v/2 for some of our class. The results in our paper are more accurate

than those in any other papers [4,7,10].
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