Journal of Mathematical Research with Applications Sept., 2017, Vol. 37, No. 5, pp. 603–612 DOI:10.3770/j.issn:2095-2651.2017.05.010 Http://jmre.dlut.edu.cn

Lie Weak Amenability of Triangular Banach Algebra

Lin CHEN^{1,*}, Fangyan LU²

1. Department of Mathematics and Physics, Anshun University, Guizhou 561000, P. R. China;

2. Department of Mathematics, Soochow University, Jiangsu 215006, P. R. China

Abstract Let \mathcal{A} and \mathcal{B} be unital Banach algebra and \mathcal{M} be Banach \mathcal{A}, \mathcal{B} -module. Then $\mathcal{T} = \begin{pmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{B} \end{pmatrix}$ becomes a triangular Banach algebra when equipped with the Banach space norm $\|\begin{pmatrix} a & m \\ b \end{pmatrix}\| = \|a\|_{\mathcal{A}} + \|m\|_{\mathcal{M}} + \|b\|_{\mathcal{B}}$. A Banach algebra \mathcal{T} is said to be Lie *n*-weakly amenable if all Lie derivations from \mathcal{T} into its n^{th} dual space $\mathcal{T}^{(n)}$ are standard. In this paper we investigate Lie *n*-weak amenability of a triangular Banach algebra \mathcal{T} in relation to that of the algebras \mathcal{A}, \mathcal{B} and their action on the module \mathcal{M} .

Keywords triangular Banach algebra; weak amenability; Lie derivation

MR(2010) Subject Classification 47B47; 47B49

1. Introduction

Let \mathcal{A} and \mathcal{B} be Banach algebras, and suppose \mathcal{M} is a Banach \mathcal{A}, \mathcal{B} -module; that is, \mathcal{M} is a Banach space, a left \mathcal{A} -module and a right \mathcal{B} -module and the action of \mathcal{A} and \mathcal{B} are jointly continuous. Let \mathcal{M}^* be the dual space of \mathcal{M} . We can define a right action of \mathcal{A} on \mathcal{M}^* and a left action on \mathcal{M}^* via

$$\langle m, f \cdot a \rangle = \langle am, f \rangle, \ \langle m, b \cdot f \rangle = \langle mb, f \rangle$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $f \in \mathcal{M}^*$. Then \mathcal{M}^* is a Banach \mathcal{B}, \mathcal{A} -module. Similarly, the second dual \mathcal{M}^{**} of \mathcal{M} becomes a Banach \mathcal{A}, \mathcal{B} -module under the actions

$$\langle f, a \cdot \phi \rangle = \langle f \cdot a, \phi \rangle, \quad \langle f, \phi \cdot b \rangle = \langle b \cdot f, \phi \rangle$$

for all $a \in \mathcal{A}$, $b \in \mathcal{B}$ and $f \in \mathcal{M}^*$ and $\phi \in \mathcal{M}^{**}$. By continuing this process to higher order dual space of \mathcal{M} , it is seen that for each $n \geq 1$, $\mathcal{M}^{(2n)}$ is a Banach \mathcal{A} , \mathcal{B} -module and $\mathcal{M}^{(2n-1)}$ is a Banach \mathcal{B} , \mathcal{A} -module. Let \mathcal{M} be a Banach \mathcal{A} -bimodule, a derivation is a continuous linear map $\delta : \mathcal{A} \to \mathcal{M}$ such that $\delta(ab) = \delta(a) \cdot b + a \cdot \delta(b)$ holds for all $a, b \in \mathcal{A}$. If $m \in \mathcal{M}$, we define $\delta_m(a) = a \cdot x - x \cdot a$ for each $a \in \mathcal{A}$. Then δ_m is a derivation. Such derivations are called inner derivations. We use the notation $Z^1(\mathcal{A}, \mathcal{M})$ for the space of all continuous derivations from \mathcal{A} into \mathcal{M} , and $N^1(\mathcal{A}, \mathcal{M})$ for the space of all inner derivations from \mathcal{A} into \mathcal{M} . The quotient space $H^1(\mathcal{A}, \mathcal{X}) = Z^1(\mathcal{A}, \mathcal{M})/N^1(\mathcal{A}, \mathcal{M})$ is called the first Hochschild cohomology group of \mathcal{A} with

Received November 2, 2016; Accepted May 17, 2017

Supported by the National Natural Science Foundation of China (Grant Nos. 11171244; 11601010).

^{*} Corresponding author

E-mail address: linchen198112@163.com (Lin CHEN); fylu@suda.edu.cn (Fanyan LU)

coefficients in \mathcal{M} . The Banach algebra \mathcal{A} is amenable if $H^1(\mathcal{A}, \mathcal{M}^*) = \{0\}$ for every Banach \mathcal{A} bimodule \mathcal{M} . This notion was first defined by Johnson in [1], who proved that the amenability of a locally compact group G is equivalent to amenability of the group algebra $L^1(G)$. Haagerup [2] proved that all nuclear C^* -algebras are amenable. Later, Bade, Curtis and Dales [3] introduced the concept of weak amenability, who showed that a commutative Banach algebra is weakly amenable if and only if every bounded derivation $\delta : \mathcal{A} \to \mathcal{A}^*$ is inner and hence zero. This motivated Johnson to introduce the notion of weak amenability for general Banach algebras and proved the group algebra $L^1(G)$ is weakly amenable for every locally compact group G in [4]. More recently, Dales et al. [5] defined the concept of n-weak amenability and permanent weak amenability for Banach algebra \mathcal{A} as follows: for every positive integer n, Banach algebra \mathcal{A} is said to be n-weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^{(n)}) = \{0\}$ and \mathcal{A} is permanently weakly amenable if it is n-weakly amenable for all $n \geq 1$, and showed every C^* -algebra is permanently weakly amenable. Zhang [6] investigated n-weak amenability of module extension Banach algebra.

Besides derivation on operator algebra, we also consider Lie derivation. A Lie derivation is a continuous linear map $\delta : \mathcal{A} \to \mathcal{M}$ such that $\delta([a, b]) = [\delta(a), b] + [a, \delta(b)]$ holds for all $a, b \in \mathcal{A}$, here [a, b] = ab - ba is the usual Lie product. A Lie derivation δ is standard if it can be decomposed as $\delta = d + \tau$, where d is a derivation from \mathcal{A} into \mathcal{M} and τ is a linear map from \mathcal{A} into the center of \mathcal{M} vanishing on each commutator. In [7], Alaminos, Brešar and Villena showed that all Lie derivations from a von Neumann algebra \mathcal{A} into any Banach \mathcal{A} -bimodule are standard. Cheung [8] investigated the Lie derivation from triangular Banach algebra into itself. Lu [9] showed every Lie derivation from nest algebra into itself is standard. Naturally, for every positive integer n, we can define Lie n-weak amenability of Banach algebra \mathcal{A} , \mathcal{A} is said to be Lie n-weakly amenable if every Lie derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is standard.

Let \mathcal{A} and \mathcal{B} be two Banach algebras and \mathcal{M} be a Banach \mathcal{A}, \mathcal{B} -module. We define

$$\mathcal{T} = \left(egin{array}{cc} \mathcal{A} & \mathcal{M} \\ & \mathcal{B} \end{array}
ight).$$

Then \mathcal{T} is a complex algebra with usual multiplication and addition actions in the space of 2×2 matrices. \mathcal{T} becomes a Banach algebra with the following norm for every $a \in \mathcal{A}, b \in \mathcal{B}$ and $m \in \mathcal{M}$

$$\left\| \begin{pmatrix} a & m \\ & b \end{pmatrix} \right\| := \|a\|_{\mathcal{A}} + \|m\|_{\mathcal{M}} + \|b\|_{\mathcal{B}}$$

This algebra \mathcal{T} is called the triangular Banach algebra. Let $t = \begin{pmatrix} a & m \\ b \end{pmatrix} \in \mathcal{T}$ and $\tau = \begin{pmatrix} f & h \\ g \end{pmatrix} \in \mathcal{T}^*$. Then \mathcal{T}^* acts on \mathcal{T} as follows: $\tau(t) = f(a) + h(m) + g(b)$. Now the left module action of \mathcal{T} on \mathcal{T}^* is give by $\begin{pmatrix} a & m \\ b \end{pmatrix} \cdot \begin{pmatrix} f & h \\ g \end{pmatrix} = \begin{pmatrix} a \cdot f + m \cdot h & b \cdot h \\ b \cdot g \end{pmatrix}$, and the right module action of \mathcal{T} on \mathcal{T}^* is as follows:

$$\begin{pmatrix} a & m \\ & b \end{pmatrix} \cdot \begin{pmatrix} f & h \\ & g \end{pmatrix} = \begin{pmatrix} a \cdot f + m \cdot h & b \cdot h \\ & b \cdot g \end{pmatrix},$$
$$\begin{pmatrix} f & h \\ & g \end{pmatrix} \cdot \begin{pmatrix} a & m \\ & b \end{pmatrix} = \begin{pmatrix} f \cdot a & h \cdot a \\ & h \cdot m + g \cdot b \end{pmatrix}.$$

Thus \mathcal{T}^* becomes a Banach \mathcal{T} -bimodule. We remove the dot for simplicity. This process may be repeated to define the module actions of \mathcal{T} on $\mathcal{T}^{(n)}$ for every $n \in \mathbb{N}$ as follows [10]:

$$\begin{pmatrix} a & m \\ b \end{pmatrix} \cdot \begin{pmatrix} a^{(2n-1)} & m^{(2n-1)} \\ b^{(2n-1)} \end{pmatrix} = \begin{pmatrix} aa^{(2n-1)} + mm^{(2n-1)} & bm^{(2n-1)} \\ bb^{(2n-1)} \end{pmatrix},$$
$$\begin{pmatrix} a^{(2n-1)} & m^{(2n-1)} \\ b^{(2n-1)} \end{pmatrix} \cdot \begin{pmatrix} a & m \\ b \end{pmatrix} = \begin{pmatrix} a^{(2n-1)}a & m^{(2n-1)}a \\ m^{(2n-1)}m + b^{(2n-1)}b \end{pmatrix},$$

and

$$\begin{pmatrix} a & m \\ b \end{pmatrix} \cdot \begin{pmatrix} a^{(2n)} & m^{(2n)} \\ b^{(2n)} \end{pmatrix} = \begin{pmatrix} aa^{(2n)} & am^{(2n)} + m^{(2n)}b \\ bb^{(2n)} \end{pmatrix},$$
$$\begin{pmatrix} a^{(2n)} & m^{(2n)} \\ b^{(2n)} \end{pmatrix} \cdot \begin{pmatrix} a & m \\ b \end{pmatrix} = \begin{pmatrix} a^{(2n)}a & a^{(2n)}m + m^{(2n)}b \\ +b^{(2n)}b \end{pmatrix},$$

for all $\begin{pmatrix} a & m \\ b \end{pmatrix} \in \mathcal{T}$, $\begin{pmatrix} a^{(2n-1)} & m^{(2n-1)} \\ b^{(2n-1)} \end{pmatrix} \in \mathcal{T}^{(2n-1)}$ and $\begin{pmatrix} a^{(2n)} & m^{(2n)} \\ b^{(2n)} \end{pmatrix} \in \mathcal{T}^{(2n)}$.

The *n*-weak amenability of triangular Banach algebra was first investigated by Forrest and Marcoux in [10] and it was proved that triangular Banach algebra \mathcal{T} is weakly amenable if and only if \mathcal{A} and \mathcal{B} are weakly amenable. Since then, amenability of triangular Banach algebra was studied by many authors [11–14]. In [14], it was shown that the triangular Banach algebra \mathcal{T} is amenable if and only if both \mathcal{A} and \mathcal{B} satisfy $\mathcal{M} = 0$. In this paper, we consider Lie weak amenability of triangular Banach algebra.

2. Lie (2n-1)-weak amenability

For triangular Banach algebra \mathcal{T} , the projections $\pi_{\mathcal{A}} : \mathcal{T} \to \mathcal{A}$ and $\pi_{\mathcal{B}} : \mathcal{T} \to \mathcal{B}$ are defined by $\pi_{\mathcal{A}}(x) = a$ and $\pi_{\mathcal{B}}(x) = b$, for any $x = \begin{pmatrix} a & m \\ b \end{pmatrix} \in \mathcal{T}$. For a Banach \mathcal{A} -bimodule \mathcal{X} , the centre of \mathcal{X} , denoted by $Z(\mathcal{X})$, is the set

$$\{X \in \mathcal{X} : AX = XA \text{ for all } A \in \mathcal{A}\}$$

The following lemma gives the structure of the dual of triangular Banach algebra.

Lemma 2.1 Let \mathcal{A} and \mathcal{B} be Banach algebras and \mathcal{M} be a Banach \mathcal{A} , \mathcal{B} -module. Let $\mathcal{T} = \begin{pmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{B} \end{pmatrix}$ be the corresponding triangular Banach algebra. The centre of $\mathcal{T}^{(n)}$ is given by

$$Z(\mathcal{T}^{(2n-1)}) = \left\{ \begin{pmatrix} f & 0 \\ & g \end{pmatrix} : f \in Z(\mathcal{A}^{(2n-1)}), \ g \in Z(\mathcal{B}^{(2n-1)}) \right\},$$

and

$$Z(\mathcal{T}^{(2n)}) = \left\{ \left(\begin{array}{cc} a & 0 \\ & b \end{array} \right) : am = mb, \forall \ m \in \mathcal{M}^{(2n)}, a \in Z(\mathcal{A}^{(2n)}), b \in Z(\mathcal{B}^{(2n)}) \right\}.$$

Moreover, if \mathcal{M} is faithful, then there exists a unique algebra isomorphism γ from $\pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)}))$ to $\pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$ such that $am = m\gamma(a)$ for every $m \in \mathcal{M}$. **Proof** By the module action of \mathcal{T} on $\mathcal{T}^{(2n-1)}$, it is easy to show that

$$Z(\mathcal{T}^{(2n-1)}) = \left\{ \begin{pmatrix} f & 0 \\ & g \end{pmatrix} : f \in Z(\mathcal{A}^{(2n-1)}), \ g \in Z(\mathcal{B}^{(2n-1)}) \right\}.$$

Suppose $a \in \mathcal{A}^{(2n)}$, $b \in \mathcal{B}^{(2n)}$ and am = mb for all $m \in \mathcal{M}^{(2n)}$, it is easy to verify $\begin{pmatrix} a & 0 \\ b \end{pmatrix} \in Z(\mathcal{T}^{(2n)})$.

Conversely, if $\begin{pmatrix} a & n \\ 0 \end{pmatrix} \in Z(\mathcal{T}^{(2n)})$, we have

$$\begin{pmatrix} a & n \\ & b \end{pmatrix} = \begin{pmatrix} I_{\mathcal{A}} & 0 \\ & 0 \end{pmatrix} \begin{pmatrix} a & n \\ & b \end{pmatrix}$$
$$= \begin{pmatrix} a & n \\ & b \end{pmatrix} \begin{pmatrix} I_{\mathcal{A}} & 0 \\ & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ & 0 \end{pmatrix},$$

so n = 0. Since

$$\begin{pmatrix} 0 & am \\ & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ & b \end{pmatrix} \begin{pmatrix} 0 & m \\ & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & m \\ & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ & b \end{pmatrix} = \begin{pmatrix} 0 & mb \\ & 0 \end{pmatrix},$$

then am = mb for any $m \in \mathcal{M}^{(2n)}$. Since

$$\begin{pmatrix} aa' & 0 \\ bb' \end{pmatrix} = \begin{pmatrix} a & 0 \\ b \end{pmatrix} \begin{pmatrix} a' & 0 \\ b' \end{pmatrix}$$
$$= \begin{pmatrix} a' & 0 \\ b' \end{pmatrix} \begin{pmatrix} a & 0 \\ b \end{pmatrix} = \begin{pmatrix} a'a & 0 \\ b'b \end{pmatrix},$$

we have aa' = a'a and bb' = b'b for any $a' \in \mathcal{A}$ and $b' \in \mathcal{B}$, and hence $a \in Z(\mathcal{A}^{(2n)})$ and $b \in Z(\mathcal{B}^{(2n)})$.

In the following we suppose that \mathcal{M} is a faithful bimodule. If am = mb for any $a' \in \mathcal{A}$, we have

$$(aa' - a'a)m = a(a'm) - aa'(am) = (a'm)b - a'(mb) = 0, \quad \forall m \in \mathcal{M}^{(2n)}.$$

Hence aa' = a'a as $\mathcal{M}^{(2n)}$ is faithful. Therefore $a \in Z(\mathcal{A}^{(2n)})$ and similarly we have $b \in Z(\mathcal{B}^{(2n)})$. So $\begin{pmatrix} a & 0 \\ b \end{pmatrix} \in Z(\mathcal{T}^{(2n)})$. Thus for any $a \in \pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)})) \subseteq Z(\mathcal{A}^{(2n)})$, there exists $b \in \pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$ such that $\begin{pmatrix} a & 0 \\ b \end{pmatrix} \in Z(\mathcal{T}^{(2n)})$. Suppose there exists another b' satisfying $\begin{pmatrix} a & 0 \\ b' \end{pmatrix} \in Z(\mathcal{T}^{(2n)})$, then we have mb = am = mb' for all $m \in \mathcal{M}^{(2n)}$ and hence b = b' as $\mathcal{M}^{(2n)}$ is faithful. Therefore, there exists a unique map $\gamma : \pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)})) \to \pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$ satisfying $am = m\gamma(a)$ for all $a \in \mathcal{A}$ and $m \in \mathcal{T}^{(2n)}$. Next we show that γ is an algebra isomorphism. If $\gamma(a) = 0$ then am = 0 for every $m \in \mathcal{M}^{(2n)}$ and thus a = 0. Therefore γ is injective. That γ is surjective follows from the definition of $\pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$. It is clear that γ is linear. For any $a, a' \in \pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)}))$, from

$$(aa')m = a(a'm) = (a'm)\gamma(a) = a'(m\gamma(a)) = m\gamma(a)\gamma(a'),$$

it follows $\gamma(aa') = \gamma(a)\gamma(a')$, proving that γ is an algebra isomorphism. \Box

606

Lie weak amenability of triangular Banach algebra

Lemma 2.2 Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a Banach \mathcal{A}, \mathcal{B} -module. A continuous linear map $L : \mathcal{T} \to \mathcal{T}^*$ is a Lie derivation if and only if L is of the form

$$L\left(\left(\begin{array}{cc}a&m\\&b\end{array}\right)\right) = \left(\begin{array}{cc}g_{\mathcal{A}}(a) + h_{\mathcal{B}}(b) - mm_0 & m_0a - bm_0\\&g_{\mathcal{B}}(b) + h_{\mathcal{A}}(a) + m_0m\end{array}\right),$$

where $m_0 \in \mathcal{M}^*$, $g_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}^*$ is a Lie derivation, $g_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}^*$ is a Lie derivation, $h_{\mathcal{A}} : \mathcal{A} \to Z(\mathcal{B}^*)$ is a linear map satisfying $h_{\mathcal{A}}([a, a']) = 0$ and $h_{\mathcal{B}} : \mathcal{B} \to Z(\mathcal{A}^*)$ is a linear map satisfying $h_{\mathcal{B}}([b, b']) = 0$.

Proof Suppose L is a Lie derivation on \mathcal{T} . Write L as

$$L\left(\begin{pmatrix}a & m\\ & b\end{pmatrix}\right) = \begin{pmatrix}g_{\mathcal{A}}(a) + h_{\mathcal{B}}(b) + k_1(m) & r_1(a) - r_2(b) + f(m)\\ & g_{\mathcal{B}}(b) + h_{\mathcal{A}}(a) + k_2(m)\end{pmatrix},$$

where $g_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}^*$, $h_{\mathcal{B}} : \mathcal{B} \to \mathcal{A}^*$, $k_1 : \mathcal{M} \to \mathcal{A}^*$, $g_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}^*$, $h_{\mathcal{A}} : \mathcal{A} \to \mathcal{B}^*$, $k_2 : \mathcal{M} \to \mathcal{B}^*$, $r_1 : \mathcal{A} \to \mathcal{M}^*$, $r_2 : \mathcal{B} \to \mathcal{M}^*$, $f : \mathcal{M} \to \mathcal{M}^*$ are all continuous linear maps. For identity $I_{\mathcal{A}} \in \mathcal{A}^*$, let $L(\begin{pmatrix} I_{\mathcal{A}} & 0 \\ 0 \end{pmatrix}) = \begin{pmatrix} i & m_0 \\ j \end{pmatrix}$ for some $i \in \mathcal{A}^*$, $n \in \mathcal{M}^*$ and $j \in \mathcal{B}^*$. Since $[\begin{pmatrix} a & 0 \\ 0 \end{pmatrix}, \begin{pmatrix} I_{\mathcal{A}} & 0 \\ 0 \end{pmatrix}] = 0$, we have

$$0 = L\left(\left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, \begin{pmatrix}I_{\mathcal{A}} & 0\\ & 0\end{pmatrix}\right]\right)$$
$$= \left[L\left(\begin{pmatrix}a & 0\\ & 0\end{pmatrix}\right), \begin{pmatrix}I_{\mathcal{A}} & 0\\ & 0\end{pmatrix}\right] + \left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, L\left(\begin{pmatrix}I_{\mathcal{A}} & 0\\ & 0\end{pmatrix}\right)\right]$$
$$= \left[\begin{pmatrix}g_{\mathcal{A}}(a) & r_{1}(a)\\ & h_{\mathcal{A}}(a)\end{pmatrix}, \begin{pmatrix}I_{\mathcal{A}} & 0\\ & 0\end{pmatrix}\right] + \left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, \begin{pmatrix}i & m_{0}\\ & j\end{pmatrix}\right]$$
$$= \begin{pmatrix}ai - ia & r_{1}(a) - m_{0}a\\ & 0\end{pmatrix}.$$

Thus, for all $a \in \mathcal{A}$, we can get ai = ia, $r_1(a) = m_0 a$. Similarly, since $\left[\begin{pmatrix} 0 & 0 \\ b \end{pmatrix}, \begin{pmatrix} I_{\mathcal{A}} & 0 \\ 0 \end{pmatrix}\right] = 0$, we can get

$$0 = L\left(\left[\begin{pmatrix} 0 & 0 \\ b \end{pmatrix}, \begin{pmatrix} I_{\mathcal{A}} & 0 \\ 0 \end{pmatrix}\right]\right)$$
$$= \left[\begin{pmatrix} h_{\mathcal{B}}(b) & -r_{2}(b) \\ g_{\mathcal{B}}(b) \end{pmatrix}, \begin{pmatrix} I_{\mathcal{A}} & 0 \\ 0 \end{pmatrix}\right] + \left[\begin{pmatrix} 0 & 0 \\ b \end{pmatrix}, \begin{pmatrix} i & m_{0} \\ j \end{pmatrix}\right]$$
$$= \begin{pmatrix} 0 & -r_{2}(b) + bm_{0} \\ bj - jb \end{pmatrix}.$$

Thus, bj = jb, $r_2(b) = -bm_0$, for all $b \in \mathcal{B}$. For $m \in \mathcal{M}$, then

$$L\left(\begin{pmatrix} 0 & m \\ & 0 \end{pmatrix}\right) = \begin{pmatrix} k_1(m) & f(m) \\ & k_2(m) \end{pmatrix} = L\left(\begin{bmatrix} I_{\mathcal{A}} & 0 \\ & 0 \end{pmatrix}, \begin{pmatrix} 0 & m \\ & 0 \end{pmatrix}\right)\right)$$
$$= \begin{bmatrix} L\left(\begin{pmatrix} I_{\mathcal{A}} & 0 \\ & 0 \end{pmatrix}\right), \begin{pmatrix} 0 & m \\ & 0 \end{pmatrix}\end{bmatrix} + \begin{bmatrix} I_{\mathcal{A}} & 0 \\ & 0 \end{pmatrix}, L\left(\begin{pmatrix} 0 & m \\ & 0 \end{pmatrix}\right) \end{bmatrix}$$

Lin CHEN and Fangyan LU

$$= \left[\begin{pmatrix} i & m_0 \\ j \end{pmatrix}, \begin{pmatrix} 0 & m \\ & 0 \end{pmatrix} \right] + \left[\begin{pmatrix} I_{\mathcal{A}} & 0 \\ & 0 \end{pmatrix}, \begin{pmatrix} k_1(m) & f(m) \\ & k_2(m) \end{pmatrix} \right]$$
$$= \left(\begin{array}{c} -mm_0 & -f(m) \\ & m_0m \end{array} \right).$$

Thus, $k_1(m) = -mm_0, k_2(m) = m_0 m, f(m) = 0$, for all $m \in \mathcal{M}$. So, for each $a \in \mathcal{A}$, $L(\begin{pmatrix} a & 0 \\ 0 \end{pmatrix}) = \begin{pmatrix} g_{\mathcal{A}}(a) & m_0 a \\ h_{\mathcal{A}}(a) \end{pmatrix}$. For $a' \in \mathcal{A}, L(\begin{pmatrix} [a,a'] & 0 \\ 0 \end{pmatrix}) = \begin{pmatrix} g_{\mathcal{A}}([a,a']) & [a,a']m_0 \\ h_{\mathcal{A}}([a,a']) \end{pmatrix}$. On the other hand,

$$\begin{aligned} 0 &= L\left(\left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, \begin{pmatrix}a' & 0\\ & 0\end{pmatrix}\right]\right) \\ &= \left[L\left(\begin{pmatrix}a & 0\\ & 0\end{pmatrix}\right), \begin{pmatrix}a' & 0\\ & 0\end{pmatrix}\right] + \left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, L\left(\begin{pmatrix}a' & 0\\ & 0\end{pmatrix}\right)\right] \\ &= \left[\begin{pmatrix}g_{\mathcal{A}}(a) & m_{0}a\\ & h_{\mathcal{A}}(a)\end{pmatrix}, \begin{pmatrix}a' & 0\\ & 0\end{pmatrix}\right] + \left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, \begin{pmatrix}g_{\mathcal{A}}(a') & m_{0}a'\\ & h_{\mathcal{A}}(a')\end{pmatrix}\right] \\ &= \begin{pmatrix}\left[g_{\mathcal{A}}(a), a'\right] + \left[a, g_{\mathcal{A}}(a')\right] & \left[a, a'\right]m_{0}\\ & 0\end{pmatrix}\right). \end{aligned}$$

Thus, $g_{\mathcal{A}}([a, a']) = [g_{\mathcal{A}}(a), a'] + [a, g_{\mathcal{A}}(a')]$ and $h_{\mathcal{A}}([a, a']) = 0$. Similarly, we can show $g_{\mathcal{B}}([b, b']) = [g_{\mathcal{B}}(b), b'] + [b, g_{\mathcal{B}}(b')]$ and $h_{\mathcal{B}}([b, b']) = 0$. Finally, we have

$$0 = L\left(\left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, \begin{pmatrix}0 & 0\\ & b\end{pmatrix}\right]\right)$$
$$= \left[L\left(\begin{pmatrix}a & 0\\ & 0\end{pmatrix}\right), \begin{pmatrix}0 & 0\\ & 0\end{pmatrix}\right] + \left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, L\left(\begin{pmatrix}0 & 0\\ & b\end{pmatrix}\right)\right]$$
$$= \left[\begin{pmatrix}g_{\mathcal{A}}(a) & m_{0}a\\ & h_{\mathcal{A}}(a)\end{pmatrix}, \begin{pmatrix}0 & 0\\ & b\end{pmatrix}\right] + \left[\begin{pmatrix}a & 0\\ & 0\end{pmatrix}, \begin{pmatrix}h_{\mathcal{B}}(b) & bm_{0}\\ & g_{\mathcal{B}}(b)\end{pmatrix}\right]$$
$$= \left(\begin{bmatrix}a, h_{\mathcal{B}}(b)\end{bmatrix} & 0\\ & [h_{\mathcal{A}}(a), b]\end{pmatrix}.$$

Thus, $[a, h_{\mathcal{B}}(b)] = 0$ and $[h_{\mathcal{A}}(a), b] = 0$. Since a and b are arbitrary, we conclude that $h_{\mathcal{A}}(\mathcal{A}) \subseteq Z(\mathcal{B}^*)$ and $h_{\mathcal{B}}(\mathcal{B}) \subseteq Z(\mathcal{A}^*)$.

Conversely, if L is of the above form, it is routine to calculate and verify that L is a Lie derivation. \Box

Theorem 2.3 Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a Banach \mathcal{A}, \mathcal{B} -module. Let $\mathcal{T} = \begin{pmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{B} \end{pmatrix}$ be the corresponding triangular Banach algebra. Then \mathcal{T} is Lie weakly amenable if and only if both \mathcal{A} and \mathcal{B} are Lie weakly amenable.

Proof Suppose \mathcal{T} is Lie weakly amenable. Then Lie derivation $L : \mathcal{T} \to \mathcal{T}^*$ is written as $D + \tau$, where D is a derivation and τ is a linear map from \mathcal{T} into the center of \mathcal{T}^* vanishing on each

608

commutator. By [10, Lemma 3.2], there exist derivations $\delta_1 : \mathcal{A} \to \mathcal{A}^*, \, \delta_3 : \mathcal{B} \to \mathcal{B}^*$ and an element $n_0 \in \mathcal{M}^*$ such that

$$D\left(\left(\begin{array}{cc}a&m\\b\end{array}\right)\right) = \left(\begin{array}{cc}\delta_1(a) - mn_0 & n_0a - bn_0\\ & \delta_3(b) + n_0m\end{array}\right).$$

By Lemma 2.1, we know $Z(\mathcal{T}^*) = \begin{pmatrix} Z(\mathcal{A}^*) & 0 \\ Z(\mathcal{B}^*) \end{pmatrix}$. Thus, we can suppose

$$\tau\left(\left(\begin{array}{cc}a&m\\&b\end{array}\right)\right) = \left(\begin{array}{cc}i_1(a) + i_2(m) + i_3(b)&0\\&j_1(a) + j_2(m) + j_3(b)\end{array}\right)$$

where i_l and j_l (l = 1, 2, 3) are continuous linear maps from $\mathcal{A}, \mathcal{M}, \mathcal{B}$ into $Z(\mathcal{A}^*)$ and $Z(\mathcal{B}^*)$, respectively. By Lemma 2.2, $h_{\mathcal{A}}(\mathcal{A}) \subseteq Z(\mathcal{B}^*)$ and $h_{\mathcal{B}}(\mathcal{B}) \subseteq Z(\mathcal{A}^*)$, hence we can get $h_{\mathcal{A}} = j_1$ and $h_{\mathcal{B}} = i_3$. Since $L = D + \tau$, we have $n_0 = m_0$ (by taking $a = I_{\mathcal{A}}, b = 0$ and m = 0), $i_2 = j_2 = 0$ (by taking a = 0, m = m, b = 0), and $g_{\mathcal{A}} = \delta_1 + i_1, g_{\mathcal{B}} = \delta_2 + j_3$ (by taking a = a, m = 0, b = 0). Since τ vanishes on commutators, so do i_1 and j_3 . Therefore, \mathcal{A} and \mathcal{B} are Lie weakly amenable.

By [10, Lemma 3.2] and Lemma 2.2, it is easy to verify that if \mathcal{A} and \mathcal{B} are Lie weakly amenable, then \mathcal{T} is Lie weakly amenable. \Box

Recall that the action of \mathcal{T} on $\mathcal{T}^{(3)}$ is a restriction of $\mathcal{T}^{(2)}$ on $\mathcal{T}^{(3)}$. By repeating the same process as above, we can show \mathcal{T} is Lie 3-weakly amenable if and only if both \mathcal{A} and \mathcal{B} are Lie 3-weakly amenable. In fact, this argument can extend to any dual of the form $\mathcal{T}^{(2n-1)}$ with $n \geq 1$. So we have the following result.

Theorem 2.4 Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a Banach \mathcal{A}, \mathcal{B} -module. Let $\mathcal{T} = \begin{pmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{B} \end{pmatrix}$ be the corresponding triangular Banach algebra. Let n be a positive integer. Then \mathcal{T} is Lie (2n-1)-weakly amenable if and only if both \mathcal{A} and \mathcal{B} are Lie (2n-1)-weakly amenable.

3. Lie (2n)-weak amenability

The action of \mathcal{T} upon $\mathcal{T}^{(2n)}$ for each $n \geq 1$ is a restriction of the Arens product to the canonical embedding of \mathcal{T} into $\mathcal{T}^{(2n)}$. We observe that the action coincide with the standard matrix multiplications. Similar to the proof of Lemma 2.2, through elementary matrix calculations, we have following lemma.

Lemma 3.1 Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a Banach \mathcal{A}, \mathcal{B} -module. A continuous linear map $L: \mathcal{T} \to \mathcal{T}^{(2n)}$ is a Lie derivation if and only if L is of the form

$$L\left(\left(\begin{array}{cc}a&m\\&b\end{array}\right)\right) = \left(\begin{array}{cc}g_{\mathcal{A}}(a) + h_{\mathcal{B}}(b)&am_0 - m_0b + f(m)\\&g_{\mathcal{B}}(b) + h_{\mathcal{A}}(a)\end{array}\right)$$

where $m_0 \in \mathcal{M}^{(2n)}$, $g_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}^{(2n)}$, $g_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}^{(2n)}$, $h_{\mathcal{A}} : \mathcal{A} \to Z(\mathcal{B}^{(2n)})$ with $h_{\mathcal{A}}([a, a']) = 0$, $h_{\mathcal{B}} : \mathcal{B} \to Z(\mathcal{A}^{(2n)})$ with $h_{\mathcal{B}}([b, b']) = 0$ and $f : \mathcal{M} \to \mathcal{M}^{(2n)}$ are continuous linear maps satisfying

- (i) $g_{\mathcal{A}}$ is a Lie derivation on \mathcal{A} , $f(am) = g_{\mathcal{A}}(a)m mh_{\mathcal{A}}(a) + af(m)$.
- (ii) $g_{\mathcal{B}}$ is a Lie derivation on \mathcal{B} , $f(mb) = mg_{\mathcal{B}}(b) h_{\mathcal{B}}(b)m + f(m)b$.

Theorem 3.2 Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a faithful Banach \mathcal{A}, \mathcal{B} -

module. Let $\mathcal{T} = \begin{pmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{B} \end{pmatrix}$ be the corresponding triangular Banach algebra. Let *n* be a positive integer. Then \mathcal{T} is Lie (2*n*)-weakly amenable if and only if $h_{\mathcal{A}}(\mathcal{A}) \subseteq \pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$ and $h_{\mathcal{B}}(\mathcal{B}) \subseteq \pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)}))$.

Proof Suppose \mathcal{T} is Lie (2*n*)-weakly amenable. Then Lie derivation $L : \mathcal{T} \to \mathcal{T}^*$ is written as $D + \tau$, where D is a derivation and τ is a linear map from \mathcal{T} into the center of \mathcal{T}^* vanishing on each commutator. By [10, Proposition 3.9], there exist continuous derivations $\delta_1 : \mathcal{A} \to \mathcal{A}^{(2n)}$, $\delta_3 : \mathcal{B} \to \mathcal{B}^{(2n)}$ and an element $n_0 \in \mathcal{M}^{(2n)}$ such that

$$D\left(\left(\begin{array}{cc}a&m\\b\end{array}\right)\right) = \left(\begin{array}{cc}\delta_1(a)&an_0-n_0b+\rho(m)\\\delta_3(b)+n_0m\end{array}\right)$$

with $\rho(am) = \delta_1(a)m + a\rho(m)$ and $\rho(mb) = \rho(m)b + m\delta_3(b)$. By Lemma 2.1, we can assume that

$$\tau\left(\left(\begin{array}{cc}a&m\\&b\end{array}\right)\right) = \left(\begin{array}{cc}i_1(a) + i_2(m) + i_3(b)&0\\&j_1(a) + j_2(m) + j_3(b)\end{array}\right),$$

where i_l and j_l (l = 1, 2, 3) are continuous linear maps from $\mathcal{A}, \mathcal{M}, \mathcal{B}$ into $Z(\mathcal{A}^*)$ and $Z(\mathcal{B}^*)$, respectively. Since $L = D + \tau$, we have $n_0 = m_0$ (by taking $a = I_{\mathcal{A}}, b = 0$ and m = 0), $i_2 = j_2 = 0$ (by taking a = 0, m = m, b = 0), and $g_{\mathcal{A}} = \delta_1 + i_1, g_{\mathcal{B}} = \delta_2 + j_3, h_{\mathcal{A}} = j_1$ and $h_{\mathcal{B}} = i_3$ (by taking a = a, m = 0, b = 0). Hence

$$h_{\mathcal{A}}(a) = j_1(a) = \pi_{\mathcal{B}}\left(\tau\left(\begin{pmatrix} a & 0\\ & 0 \end{pmatrix}\right)\right) \in \pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$$

and

$$h_{\mathcal{B}}(b) = i_3(b) = \pi_{\mathcal{A}}\left(\tau\left(\begin{array}{cc} 0 & 0 \\ & b \end{array}\right)\right) \in \pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)}))$$

Conversely, suppose that $h_{\mathcal{A}}(\mathcal{A}) \subseteq \pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$ and $h_{\mathcal{B}}(\mathcal{B}) \subseteq \pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)}))$. By Lemma 2.1, there exists the unique group isomorphism γ from $\pi_{\mathcal{A}}(Z(\mathcal{T}^{(2n)}))$ to $\pi_{\mathcal{B}}(Z(\mathcal{T}^{(2n)}))$. Define

$$D\left(\begin{pmatrix}a & m\\ & b\end{pmatrix}\right) = \begin{pmatrix}g_{\mathcal{A}}(a) - \gamma^{-1}h_{\mathcal{A}}(a) & an_0 - n_0b + f(m)\\ & g_{\mathcal{B}}(b) - \gamma h_{\mathcal{B}}(b)\end{pmatrix}$$

and

$$h\left(\left(\begin{array}{cc}a&m\\&b\end{array}\right)\right) = \left(\begin{array}{cc}\gamma^{-1}h_{\mathcal{A}}(a) + h_{\mathcal{B}}(b)&0\\&h_{\mathcal{A}}(a) + \gamma h_{\mathcal{B}}(b)\end{array}\right)$$

It is easy to verify that $h(\begin{pmatrix} a & m \\ b \end{pmatrix}) \in Z(\mathcal{T}^{(2n)})$ vanishing on commutators. By Lemma 3.1, we have

$$f(am) = g_{\mathcal{A}}(a)m - mh_{\mathcal{A}}(a) + af(m) = (g_{\mathcal{A}}(a) - \gamma^{-1}h_{\mathcal{A}}(a))m + af(m)$$

and similarly

$$f(mb) = mg_{\mathcal{B}}(b) - h_{\mathcal{B}}(b)m + f(m)b = m(g_{\mathcal{B}}(b) - \gamma h_{\mathcal{B}}(b)) + f(m)b.$$

Let $p_{\mathcal{A}}(a) = g_{\mathcal{A}}(a) - \gamma^{-1}h_{\mathcal{A}}(a)$. Then $f(aa'm) = p_{\mathcal{A}}(aa')m + aa'f(m)$. Also,
 $f(aa'm) = p_{\mathcal{A}}(a)a'm + af(a'm) = p_{\mathcal{A}}(a)a'm + ap_{\mathcal{A}}(a')m + aa'f(m).$

Thus, $p_{\mathcal{A}}(aa')m = (p_{\mathcal{A}}(a)a' + ap_{\mathcal{A}}(a'))m$. Hence since $\mathcal{M}^{(2n)}$ is faithful, we have $p_{\mathcal{A}}(aa') = p_{\mathcal{A}}(a)a' + ap_{\mathcal{A}}(a')$, $p_{\mathcal{A}}$ is a derivation. Similarly, $g_{\mathcal{B}}(b) - \gamma h_{\mathcal{B}}(b)$ is also a derivation. Therefore, by [10, Proposition 3.9], D is a derivation. \Box

4. Lie weak amenability of finite dimension nest algebra

Recall that a nest on a Hilbert space \mathcal{H} is a chain \mathcal{N} of closed subspaces of \mathcal{H} which contains $\{0\}$ and \mathcal{H} , and which is closed under the operations of taking intersections and closed spans with the corresponding nest algebra $\mathcal{T}(\mathcal{N}) = \{T \in \mathcal{B}(\mathcal{H}) : TN \subseteq N \text{ for all } N \in \mathcal{N}\}$. Our main result here is the following theorem.

Theorem 4.1 Let $\mathcal{T}(\mathcal{N})$ be a nest algebra on a finite dimensional complex Hilbert space \mathcal{H} . Then $\mathcal{T}(\mathcal{N})$ is Lie permanently weakly amenable.

Proof For each $n \geq 1$, since $\mathcal{T}(\mathcal{N})$ is finite dimensional, it follows that $\mathcal{T}(\mathcal{N})^{(2n)}$ is isomorphic to $\mathcal{T}(\mathcal{N})$ as a Banach algebra. By [9], $\mathcal{T}(\mathcal{N})$ is Lie (2n)-weak amenable (When the nest is trivial and $\mathcal{T}(\mathcal{N}) \simeq \mathcal{B}(\mathcal{H})$ by [15]).

As for odd weak amenability, the proof works by induction upon the dimension m of the space \mathcal{H} upon which $\mathcal{T}(\mathcal{N})$ acts. When n = 1, $\mathcal{T}(\mathcal{N}) \simeq \mathbb{C}$. It is clear that the conclusion holds. Suppose the result holds for all nest algebras acting upon Hilbert spaces of dimension less than k. Let $\mathcal{T}(\mathcal{N})$ be a nest algebra acting on a space of dimension k. Then either the nest \mathcal{N} is trivial, in which case $\mathcal{T}(\mathcal{N}) \simeq \mathcal{B}(\mathcal{H})$ is a C^* -algebra, by [7, Theorem 6.11], it is Lie amenable and hence is permanently Lie weakly amenable, or there exists an element $\{0\} \neq N \neq \mathcal{H}$ in \mathcal{N} and we may decompose $\mathcal{T}(\mathcal{N})$ as $\mathcal{T}(\mathcal{N}) = \begin{pmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{B} \end{pmatrix}$ where \mathcal{A} is a nest algebra upon N, \mathcal{B} is a nest algebra upon N^{\perp} , and \mathcal{M} is the space of all operators taking N^{\perp} into N. By our induction hypothesis, \mathcal{A} and \mathcal{B} are Lie permanently weakly amenable. By Theorem 2.4, we conclude that $\mathcal{T}(\mathcal{N})$ is Lie (2n-1)-weakly amenable for all $n \geq 1$.

Combining these two results yields our theorem. \Box

Acknowledgements The authors would like to thank the referee for his valuable comments and corrections which have improved the quality of this paper.

References

- [1] B. E. JOHNSON. Cohomology in Banach algebras. American Mathematical Society, Providence, R.I., 1972.
- [2] U. HAAGERUP. All nuclear C^* -algebra are amenable. Invent. Math., 1983, 74(2): 305–319.
- [3] W. G. BADE, P. C. CURTIS, H. G. DALES. Amenability and weak amenability for beurling and Lipschitz algebras. Proc. London Math. Soc., 1987, 55(2): 359–377.
- [4] B. E. JOHNSON. Weak amenability of group algebras, Bull. London. Math. Soc., 1991, **396**(23): 281–284.
 [5] H. G. DALES, F. GHAHRAANI, N. GRONBAEK. Derivations into iterated duals of Banach algebras. Studia Math., 1998, **128**(1): 19–54.
- [6] Yong ZHANG. Weak amenability of module extensions of Banach algebras. Trans. Amer. Math. Soc., 2002, 354(10): 4131–4151.
- [7] J. ALAMINOS, M. BREŠAR, A. R. VILLENA. The strong degree of von Neumann algebras and the structure of Lie and Jordan derivations. Math. Proc. Cambridge Philos. Soc., 2004, 137(2): 441–463.
- [8] W. CHEUNG. Lie derivations of triangular algebras. Linear Multilinear Algebra, 2003, 51(3): 299–310.

- [9] Fangyan LU. Lie triple derivations on nest algebras. Math. Nachr. 2007, 280(8): 882–887.
- [10] B. E. FORREST, L. W. MARCOUX. Weak amenability of triangular Banach algebras. Trans. Amer. Math. Soc., 2002, 354(4): 1435–1452.
- [11] G. ABBASPOUR. Ideal amenability of triangular Banach algebras. Int. J. Contemp. Math. Anal., 2010, 4(26): 1285–1290.
- [12] A. BODAGHI, A. JABBARI. n-weakly module amenability of triangular Banach algebras. Math. Slovaca, Mathematics, 2013, 65(3): 645–666.
- [13] S. ETEMAD, M. ETTEFAGH. (2n-1)-ideal amenability of triangular Banach algebra. Proc. Indian Acad. Sci. Math. Sci., 2015, 125(2): 199–207.
- [14] A. R. MEDGHALCHI, M. H. SATTARI, T. YAZDANPANAH. Amenability and weak amenability of triangular Banach algebras. Bull. Iranian Math. Soc., 2005, 31(2): 57–69.
- [15] C. R. MIERS. Lie derivations of von Neumann algebras. Duke Math. J., 1973, 40(2): 403–409.

612