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Abstract This paper focuses on the study for the stability of stochastic nonlinear programming

when the probability measure is perturbed. Under the Lipschitz continuity of the objective

function and metric regularity of the feasible set-valued mapping, the outer semicontinuity of

the optimal solution set and Lipschitz continuity of optimal values are guaranteed. Importantly,

it is proved that, if the linear independence constraint qualification and strong second-order

sufficient condition hold at a local minimum point of the original problem, there exists a Lipschitz

continuous solution path satisfying the Karush-Kuhn-Tucker conditions.
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1. Introduction

Consider the stochastic nonlinear programming problem

min
x∈ℜn

f(x, P )

s.t. gi(x, P ) ≤ 0, i = 1, . . . , p,
(1.1)

where

f(x, P ) :=

∫
Ξ

F (x, ξ)dP (ξ), gi(x, P ) :=

∫
Ξ

Gi(x, ξ)dP (ξ), i = 1, . . . , p,

with F : ℜn×Ξ → ℜ and Gi : ℜn×Ξ → ℜ,i = 1, . . . , p, being Carathéodory functions (continuous

in x, measurable in ξ) and Ξ ⊂ ℜd being the support set of random variables ξ. For notation

simplicity, we denote g(x, P ) := (g1(x, P ), g2(x, P ), . . . , gp(x, P )) ∈ ℜp. Then problem (1.1) can

be rewritten as in a compact form:

min
x∈ℜn

f(x, P )

s.t. g(x, P ) ≤ 0.
(1.2)

We define

Φ(P ) := {x ∈ ℜn : g(x, P ) ≤ 0},
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ϑ(P ) := inf{f(x, P ) : x ∈ Φ(P )},

S(P ) := {x ∈ Φ(P ) : f(x, P ) = ϑ(P )},

as the feasible set, optimal value and optimal solution of the stochastic nonlinear programming

problem (1.1).

Stability analysis of deterministic nonlinear programming has been well investigated. We list

the most important ones among them as follows:

• Robinson [1] proved that if the multi-valued mapping F from X to Y is piecewise polyhe-

dral, then F is calm at any x0 ∈ domF , where X and Y are finite dimensional linear spaces.

• Robinson [2] showed that the strong second order sufficient condition and the LICQ imply

the strong regularity of the solution to the KKT system. Interestingly, the converse is also true,

see Jongen et al. [3].

• Robinson [4] showed that the second order sufficient condition and MFCQ imply the upper

Lipschitz continuity of KKT solutions.

• Dontchev and Rockafellar [5] showed that the strict MFCQ and the second-order sufficient

optimality conditons are equivalent to the robust isolated calmness of the KKT system.

Another important result is about the strong regularity and Aubin property for the variational

inequalities over polyhedral convex sets. Namely, for the following variational inequality problem

S(z, w) = {x : 0 ∈ z + f(w, x) +NC(x)}

where C is a polyhedral convex set, Dontchev and Rockafellar [6] showed that the strong regu-

larity of S is equivalent to Aubin property of S around a point (z0, w0, x0) ∈ ghpS.

There are so many important results about perturbation analysis for deterministic opti-

mization problems, including not only nonlinear programming but also second-order conic and

semidefinite conic optimization, see for examples [7–13].

For the stochastic nonlinear programming problems, the survey paper by Römisch [14] estab-

lished a systematic qualitative and quantitative analysis of optimal value functions and optimal

solution sets under the perturbation of probability measure. In particular, the two-stage stochas-

tic problems and chance constrained programming problems are discussed in [14]. Note that the

survey by Römisch’s mainly focuses on the optimal value function and optimal solution set of s-

tochastic nonlinear programming problems, the stability analysis of Karush-Kuhn-Tucker (KKT)

system is not considered. Therefore, it is worth investigating the stability of stochastic nonlinear

programming problems, including not only the stability of optimal value functions and optimal

solution sets, but also the stability analysis of KKT system. This is the motivation of this paper.

The rest of the paper is organized as follows. In Section 2, the outer semicontinuity of the

optimal solution sets and the Lipschitz continuity of optimal value function, from [14], are given.

Under the linear independence constraint qualification and the strong second-order sufficient

condition, the existence and properties of the solution path are investigated in Section 3. Section

4 concludes the paper.

Throughout the paper, B denotes the unit closed ball in the Euclidean space ℜn and B(x, δ)
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denotes the closed ball with center x ∈ ℜn and radius δ > 0. For a point x ∈ X ⊂ ℜn and a set

S ⊂ X, int S denotes the interior of the set S, dist(x, S) := infx′∈S ∥x−x′∥ denotes the distance

from x to S. For a closed convex cone K and a point z ∈ K, denote by NK(z) the normal cone

of K at z, TK(z) the tangent cone of K at z, and lin TK(z) the largest linear space contained in

TK(z).

2. Stability results

In this section, we will recall, from [14], the results about the stability for optimal values and

optimal solutions of the stochastic nonlinear programming problem under probability measure

perturbation. Before this, we give some definitions. For a nonempty open subset O ⊂ ℜn, define

FO :=
{
F (x, ·), Gi(x, ·) : x ∈ clO, i = 1, . . . , p

}
,

ΦO(Q) :=
{
x ∈ clO : g(x,Q) ≤ 0

}
,

PFO (Ξ) :=

Q ∈ P(Ξ) :

−∞ < inf
x∈ℜn

f(x,Q), sup
x∈clO

f(x,Q) < +∞

−∞ < inf
x∈ℜn

gi(x,Q), sup
x∈clO

gi(x,Q) < +∞, i = 1, . . . , p

 ,

where clO denotes the closure of O. Define

dFO (P,Q) := sup
ψ∈FO

∣∣∣ ∫
Ξ

ψ(ξ)dQ(ξ)−
∫
Ξ

ψ(ξ)dP (ξ)
∣∣∣, ∀P,Q ∈ PFO ,

which is called a distance with ζ-structure. By [14, Proposition 3] f(x,Q) and gk(x,Q) (k =

1, . . . , p) are sequentially lower semicontinous when F (x, ·) and Gk(x, ·) are Carathéodory func-

tions for any probability measure Q.

Just like [14, Proposition 4], we can easily obtain that the set-valued mapping ΦO(·) is

sequentially closed.

Proposition 2.1 Let O be an open subset of ℜn. Assume, for any P ∈ P(Ξ), that Gi(x, ξ) (i =

1, . . . , p) are Carathéodory functions, and there exists P -integrable function Zi(ξ) such that

|Gi(x, ξ)| ≤ Zi(ξ) for P -almost every ξ ∈ Ξ and all x in clO. Then the graph of the set-valued

mapping Q→ ΦO(Q) from (PFO ,dFO ) into ℜn is sequentially closed.

Now we discuss the stability of optimal value functions and optimal solution sets under the

perturbation of probability measures. Define for y ∈ ℜp,

Φ(y, P ) :={x ∈ ℜn : g(x, P ) + y ≤ 0},

Φ−1(x, P ) :={y ∈ ℜm : x ∈ Φ(y, P )}.

A nonempty set S ⊂ ℜn is called a complete local minimizing (CLM) set for

min
x∈ℜn

{f(x,Q) : g(x,Q) ≤ 0} (2.1)

relative to O if O ⊂ ℜn is open and S = SO(Q) ⊂ O, where

SO(Q) := {x ∈ ΦO(Q) : f(x,Q) = ϑO(Q)},
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ϑO(Q) := inf{f(x,Q) : x ∈ ΦO(Q)}.

We obtain from [14, Theorem 5] the following result, which is about the upper semicontinuity of

the solution mapping and the Lipschitz continuity of the optimal value function.

Theorem 2.2 Let P ∈ PFO and assume that

(a) S(P ) is nonempty and bounded, O ⊂ ℜn is an open bounded neighbourhood of S(P );
(b) the function x→ f(x, P ) is Lipschitz continuous on clO with Lipschitz constant L0;

(c) the mapping x→ Φ−1(x, P ) is metrically regular at each (x, 0) with x ∈ S(P ).
Then the set-valued mapping SO from (PFO ,dFO ) to ℜn is upper semicontinuous at P . Fur-

thermore, there exist constants L > 0 and δ > 0 such that

|ϑ(P )− ϑO(Q)| ≤ LdFO (P,Q) (2.2)

holds and SO(Q) is a CLM set of Problem (2.1) relative to O for Q ∈ PFO satisfying dFO (P,Q) <

δ.

From [14, Theorem 9] follows the following quantitative analysis about the solution mapping.

Theorem 2.3 Let the assumptions of Theorem 2.2 be satisfied and P ∈ PFO . Then there exists

a constant L̃ ≥ 1 such that

∅ ̸= SO(Q) ⊂ S(P ) + ΨP (L̃dFO (P,Q))

holds for any Q ∈ PFO satisfying dFO (P,Q) < δ. Here δ is the constant in Theorem (2.1) and

ΨP (η) := η + ψ−1
P (2η), η > 0

with

ψP (τ) := min{f(x, P )− ϑ(P ) : d(x,S(P )) ≥ τ, x ∈ ΦO(P )}.

3. The strong regularity of the KKT system

This section will discuss the strong regularity of the KKT system when the probability

measure P is perturbed. We propose the following assumptions.

Assumption 3.1 For any ξ ∈ Ξ, JxF (x, ξ), JxGk(x, ξ), ∇2
xxF (x, ξ), ∇2

xxGk(x, ξ) exist for

any x ∈ ℜn and k = 1, . . . , p, and for any x ∈ ℜn and Q ∈ P(Ξ), f(x,Q), g(x,Q), ∇xf(x,Q),

Jxg(x,Q), ∇2
xxf(x,Q) and ∇2

xxgk(x,Q) are well-defined for k = 1, . . . , p.

Assumption 3.2 For any Q ∈ P(Ξ), there exist positive valued random variables Z(ξ) and

C(ξ) such that

sup
Q∈P(Ξ)

∫
Ξ

Z(ξ)dQ(ξ) <∞ and sup
Q∈P(Ξ)

∫
Ξ

C(ξ)dQ(ξ) <∞.

For any x ∈ ℜn and for any Q ∈ P(Ξ), F (x, ξ), Gk(x, ξ), k = 1, . . . , p, ∇xF (x, ξ),∇xGk(x, ξ), k =

1, . . . , p and ∇2
xxF (x, ξ), ∇2

xxGk(x, ξ), k = 1, . . . , p are continuous in x, and

∥(F (x, ξ), G(x, ξ)); (∇xF (x, ξ),JxG(x, ξ)); (∇2
xxF (x, ξ), D

2
xxG(x, ξ)))∥ ≤ Z(ξ).
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For x1, x2 ∈ ℜn and Q-almost every ξ ∈ Ξ,

∥(F (x1, ξ), G(x1, ξ))− (F (x2, ξ), G(x2, ξ))∥ ≤ C(ξ)∥x1 − x2∥,

∥(∇xF (x1, ξ),JxG(x1, ξ))− (∇xF (x2, ξ),JxG(x2, ξ))∥ ≤ C(ξ)∥x1 − x2∥,

∥(∇2
xxF (x1, ξ), D

2
xxG(x1, ξ))− (∇2

xxF (x2, ξ), D
2
xxG(x2, ξ))∥ ≤ C(ξ)∥x1 − x2∥.

Here ∥ · ∥ denotes the operator norm in the corresponding spaces.

It follows from Assumptions 3.1 and 3.2 that, for any Q ∈ P(Ξ), f(·, Q),g(·, Q), ∇xf(·, Q),

Jxg(·, Q), ∇2
xxf(·, Q) and D2

xxg(·, Q) are Lipschitz continuous on ℜn, the Lipschitz constant is

uniform with respect to Q ∈ P(Ξ), and we denote it as L1 here. Define

F := F1 ∪ F2 ∪ F3

with

F1 :=
{
F (x, ·), Gk(x, ·), x ∈ ℜn, k = 1, . . . , p

}
,

F2 :=

{
∂F

∂xi
(x, ·), ∂Gk

∂xi
(x, ·), x ∈ ℜn,

i = 1 . . . , n

k = 1, . . . , p

}
,

F3 :=

 ∂2F

∂xixj
(x, ·) , ∂

2Gk
∂xixj

(x, ·) , x ∈ ℜn,
i = 1, . . . , n,

j = 1 . . . , n,

k = 1, . . . , p

 .

Define

PF (Ξ) = {Q ∈ P(Ξ) : −∞ < inf
x∈ℜn

EQ[ψ(x, ξ)], sup
x∈ℜn

EQ[ψ(x, ξ)] < +∞, ∀ψ ∈ F

It is easy to prove, under Assumptions 3.1 and 3.2, for P,Q ∈ PF (Ξ), the following inequalities

are satisfied:

|f(x1, P )− f(x2, Q)| ≤ dF (P,Q) + L1∥x1 − x2∥,

∥g(x1, P )− g(x2, Q)∥ ≤ pdF (P,Q) + L1∥x1 − x2∥,

∥∇xf(x1, P )−∇xf(x2, Q)∥ ≤ ndF (P,Q) + L1∥x1 − x2∥,

∥Jxg(x1, P )− Jxg(x2, Q)∥ ≤ pndF (P,Q) + L1∥x1 − x2∥,

∥∇2
xxf(x1, P )−∇2

xxf(x2, Q)∥ ≤ n2dF (P,Q) + L1∥x1 − x2∥,

∥D2
xxg(x1, P )−D2

xxg(x2, Q)∥ ≤ pn2dF (P,Q) + L1∥x1 − x2∥.

Now we turn to Problem (1.1). Let x be a local minimum point of Problem (1.1) at which

Mangasarian-Fromowitz constraint qualification (MFCQ) holds, namely there exists nonzero

vector d0 ∈ ℜn such that

∇xgi(x, P )
T d0 < 0, i ∈ I(P, x),

where I(P, x) = {i : gi(x, P ) = 0}. Then x is a stationary point for Problem (1.1), namely there

exists a Lagrange multiplier λ ∈ ℜp such that (x, λ) satisfies the following Karush-Kuhn-Tucker

(KKT) conditions:

∇xL(P, x, λ) = 0, 0 ≤ λ⊥g(x, P ) ≤ 0, (3.1)
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where

L(P, x, λ) := f(x, P ) + ⟨λ, g(x, P )⟩.

Define

Λ(P, x) := {λ ∈ ℜp : ∇xL(P, x, λ) = 0, 0 ≤ λ⊥g(x, P ) ≤ 0}

as the set of Lagrange multipliers at x. The above KKT conditions for (x, λ) can be equivalently

expressed as

0 ∈ H(P, x, λ) +Nℜn×ℜp
−
(x, λ), (3.2)

where

H(P, x, λ) :=

 ∇xL(P, x, λ)

g(x, P )

 . (3.3)

Let

F (P, x, λ) :=

 ∇xL(P, x, λ)

g(x, P )−Πℜp
−
(g(x, P ) + λ)

 . (3.4)

Then (x, λ) is a KKT point of Problem (1.1) if and only if F (P, x, λ) = 0. Define the critical

cone of Problem (1.1) at a stationary point x ∈ ℜn as

C(P, x) := {d ∈ ℜn : Jxg(x, P )d ∈ Tℜp
−
(g(x, P )), ⟨∇xf(x, P ), d⟩ ≤ 0}.

When probability measure P is fixed, we obtain the following results from [9] directly.

Proposition 3.3 ([9]) Let Assumptions 3.1 and 3.2 be satisfied. Assume that x is a local

minimizer of Problem (1.1) and MFCQ holds at x. Then the following assertions hold.

(i) The set of Lagrange multipliers Λ(P, x) is nonempty and compact.

(ii) For any d ∈ C(P, x),

max
λ∈Λ(P,x)

{⟨∇2
xxL(P, x, λ)d, d⟩} ≥ 0.

The linear independence constraint qualification is satisfied at x if the set of vectors {∇xgi(x, P ) :

i ∈ I(P, x)} are linearly independent. If x is a local minimum point at which the linear inde-

pendence condition holds, then Λ(P, x) is reduced to a singleton. The following result about the

second-order sufficient optimality conditions comes from [9].

Proposition 3.4 Let Assumptions 3.1 and 3.2 be satisfied. Assume that x is a feasible point

of Problem (1.1) and Λ(P, x) is nonempty. If

sup
λ∈Λ(P,x)

{
⟨∇2

xxL(P, x, λ)d, d⟩
}
> 0, (3.5)

for any d ∈ C(P, x) \ {0}, then the second-order growth condition holds at x.

Definition 3.5 Assume that x is a feasible point of Problem (1.1) and Λ(P, x) is nonempty.

We say that the strong second-order sufficient condition holds at x if

sup
λ∈Λ(P,x)

{⟨∇2
xxL(P, x, λ)d, d⟩} > 0,
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for any d ∈ aff C(P, x) \ {0}.

Proposition 3.6 ([15]) Let Assumptions 3.1 and 3.2 be satisfied. Assume that x is a local

minimum point of Problem (1.1) at which MFCQ holds and λ ∈ Λ(P, x). Then the following

properties are equivalent.

(i) The strong second-order sufficient condition and the linear independence constraint qual-

ification hold at x;

(ii) The generalized Eq. (3.2) is strong regular at (x, λ);

(iii) Any element in ∂xF (P, x, λ) is nonsingular.

Define for τ > 0, Γ(P, τ) := {Q ∈ PF : dF (P,Q) < τ}. Now we will discuss the solution path

of the following problem

min
x

f(x,Q)

s.t. g(x,Q) ∈ ℜp−,
(3.6)

when Q is close to P and establish the main result of this paper.

Theorem 3.7 Let Assumptions 3.1 and 3.2 be satisfied. Assume that x is a local minimum

point of Problem (1.1) at which the linear independence constraint qualification holds at x and

Λ(P, x) = {λ} and the strong second-order sufficient condition holds at x. Then there exist δ > 0

and ε > 0, and (x(·), λ(·)) : Γ(P, δ) → Bε(x, λ) such that (x(P ), λ(P )) = (x, λ), and

(i) the pair (x(Q), λ(Q)) satisfies the KKT condition for Problem (3.6) when Q ∈ Γ(P, δ);

(ii) there exists a constant L̂ > 0 such that

∥(x(Q), λ(Q))− (x(P ), λ(P ))∥ ≤ L̂dF (P,Q) (3.7)

for Q ∈ Γ(P, δ).

Proof Since both the linear independence constraint qualification and strong second-order

sufficient condition hold at a local minimum point x, we obtain from Proposition 3.6 that the

generalized equation

η ∈

 ∇xL(P, x, λ)

g(x, P )

+

 ∇2
xxL(P, x, λ) Jxg(x, P )T

Jxg(x, P ) 0

 x− x

λ− λ

+Nℜn×ℜp
−
(x, λ) (3.8)

or

η ∈ H(P, x, λ) + Jx,λH(P, x, λ)(x− x, λ− λ) +Nℜn×ℜp
−
(x, λ), (3.9)

is strong regular at (x, λ). That is, there is a unique Lischitz continuous solution (φ(·), ψ(·)) :
Bδ1(0) → Bε1(x, λ) for some δ1 > 0 and ε1 > 0. Let γ > 0 be the Lipschitz constant for

(φ(·), ψ(·)) over Bδ1(0).

Define

r(Q, x, λ) := H(P, x, λ) + Jx,λH(P, x, λ)(x− x, λ− λ)−H(Q, x, λ).

Then we have (x, λ) solves

0 ∈ H(Q, x, λ) +Nℜn×ℜp
−
(x, λ) (3.10)
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if and only if

r(Q, x, λ) ∈ H(P, x, λ) + Jx,λH(P, x, λ)(x− x, λ− λ) +Nℜn×ℜp
−
(x, λ). (3.11)

Choose 0 < δ < δ1, 0 < ε < ε1 and δ2 > 0 such that

γδ2 < 1/(γ + 1),

2nδ + pn∥λ∥∞δ < (1− γδ2)ε/γ,

r(Q, x, λ) ∈ Bδ1(0), ∀(x, λ) ∈ Bε(x, λ),

(2n2 + 4pn)δ + 2pn2∥λ∥∞δ + 3L1ε+ L1∥λ∥∞ε+

√
nε sup

x∈Bε1
(x),Q∈Γ(P,δ)

p∑
k=1

∥∇2
xxgk(x,Q)∥ < δ2. (3.12)

For any fixed Q ∈ Γ(P, δ), define

θQ(·) := (φ(r(Q, ·)), ψ(r(Q, ·))). (3.13)

Now we prove that θQ(·) is a contraction mapping from Bε(x, λ) onto itself. For any

(x1, λ1), (x2, λ2) ∈ Bε(x, λ), from the Lipschitz continuity of (φ(·), ψ(·)) on Bδ1(0),

∥θQ(x1, λ1)− θQ(x
2, λ2)∥

≤ γ∥r(Q, x1, λ1)− r(Q, x2, λ2)∥

≤ γ
[

sup
µ∈[0,1]

∥Jx,λr(Q, (1− µ)(x1, λ1) + µ(x2, λ2))∥
]
∥(x1, λ1)− (x2, λ2)∥. (3.14)

For any (x, λ) = (xµ, λµ) := (1− µ)(x1, λ1) + µ(x2, λ2), one has

Jx,λr(Q, x, λ) = Jx,λH(P, x, λ)− Jx,λH(Q, x, λ)

= Jx,λH(P, x, λ)− Jx,λH(P, x, λ) + Jx,λH(P, x, λ)− Jx,λH(Q, x, λ)+

Jx,λH(Q, x, λ)− Jx,λH(Q, x, λ)

=



∇2
xxf(x, P )−∇2

xxf(x, P )

+

p∑
k=1

λk(∇2
xxgk(x, P )−∇2

xxgk(x, P ))
Jxg(x, P )T − Jxg(x, P )T

−Jxg(x, P ) + Jxg(x, P ) 0


+



∇2
xxf(x, P )−∇2

xxf(x,Q)

+

p∑
k=1

λk(∇2
xxgk(x, P )−∇2

xxgk(x,Q))
Jxg(x, P )T − Jxg(x,Q)T

−Jxg(x, P ) + Jxg(x,Q) 0


+


p∑
k=1

(λk − λk)∇2
xxgk(x,Q) 0

0 0

 . (3.15)
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Thus we obtain from (3.12) and (3.15) that

∥Jx,λr(Q, xµ, λµ)∥ ≤(2n2 + 4pn)δ + 2pn2∥λ∥∞δ + 3L1ε+ L1∥λ∥∞ε+

√
nε sup

x∈Bε1 (x),Q∈Γ(P,δ)

p∑
k=1

∥∇2
xxgk(x,Q)∥ < δ2

for any Q ∈ Γ(P, δ), (x1, λ1), (x2, λ2) ∈ Bε(x, λ) and µ ∈ [0, 1]. Therefore, we obtain from (3.14)

that

∥θQ(x1, λ1)− θQ(x
2, λ2)∥ ≤ γδ2∥(x1, λ1)− (x2, λ2)∥. (3.16)

From the choice of δ2, γδ2 < 1, this implies that θQ is a contraction mapping. Furthermore,

∥θQ(x, λ)− (x, λ)∥ = ∥(φ(r(Q, x, λ), ψ(r(Q, x, λ))− (φ(0), ψ(0))∥

≤ γ∥r(Q, x, λ)− 0∥

= γ∥H(P, x, λ)−H(Q, x, λ)∥

≤ γ(2nδ + pn∥λ∥∞δ) ≤ (1− γδ2)ε.

This implies, for (x, λ) ∈ Bε(x, λ), that

∥θQ(x, λ)− (x, λ)∥ ≤ ∥θQ(x, λ)− θQ(x, λ)∥+ ∥θQ(x, λ)− (x, λ)∥

≤ γδ2∥(x, λ)− (x, λ)∥+ (1− γδ2)ε

≤ ε,

namely θQ maps Bε(x, λ) to Bε(x, λ) itself. According to Banach fixed point theorem, there

exists a unique mapping (x(·), λ(·)) : Γ(P, δ) → Bε(x, λ) satisfying

(x(Q), λ(Q)) = θQ(x(Q), λ(Q)), ∀Q ∈ Γ(P, δ).

Therefore, for Q ∈ Γ(P, δ), the pair (x(Q), λ(Q)) satisfies the KKT condition for Problem (3.6)

and assertion (i) is proved.

Now we prove assertion (ii). Choose L̂ := (γ + 1)(n+ p+ pn2∥λ∥∞). Then for Q ∈ Γ(P, δ),

from (3.16), we obtain

∥(x(Q), λ(Q))− (x(P ), λ(P ))∥ = ∥θQ(x(Q), λ(Q))− θP (x(P ), λ(P ))∥

≤ ∥θQ(x(Q), λ(Q))− θQ(x(P ), λ(P ))∥+ ∥θQ(x(P ), λ(P ))− θP (x(P ), λ(P ))∥

≤ γδ2∥(x(Q), λ(Q))− (x(P ), λ(P ))∥+

∥(φ(r(Q, x(P ), λ(P ))), ψ(r(Q, x(P ), λ(P ))))−

(φ(r(P, x(P ), λ(P ))), ψ(r(P, x(P ), λ(P ))))∥

≤ γδ2∥(x(Q), λ(Q))− (x(P ), λ(P ))∥+ γ∥H(Q, x(P ), λ(P ))−H(P, x(P ), λ(P ))∥

≤ γδ2∥(x(Q), λ(Q))− (x(P ), λ(P ))∥+ γ(n+ p+ pn2∥λ∥∞)dF (P,Q),

which implies

∥(x(Q), λ(Q))− (x(P ), λ(P ))∥ ≤ γ(n+ p+ pn2∥λ∥∞)

1− γδ2
dF (P,Q)
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< (γ + 1)(n+ p+ pn2∥λ∥∞))dF (P,Q) := L̂dF (P,Q).

This proves assertion (ii). �
It follows from Theorem 3.7, if the linear independence constraint qualification and the

strong second-order sufficient condition are satisfied for the original problem, then there exists

a Lipschitz continuous solution path satisfying the Karush-Kuhn-Tucker conditions when the

probability measure is perturbed.

4. Conclusions

In this paper, for stochastic nonlinear programming, we establish that if the the linear inde-

pendence constraint qualification and the strong second-order sufficient condition are satisfied for

the original problem, then there exists a Lipschitz continuous solution path satisfying the Karush-

Kuhn-Tucker conditions when the probability measure varies in a neighborhood of the reference

probability in the sense of the distance dF . Besides strong regularity, there are other stability

notions such as Aubin property, isolated calmness and calmness for the Karush-Kuhn-Tucker

system, these stability properties for stochastic nonlinear programming are worth studying.
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