Fekete-Szegő Functional Problems for Certain Subclasses of Bi-Univalent Functions Involving the Hohlov Operator

Pinhong LONG1,*, Huo TANG2, Wenshuai WANG1

1. School of Mathematics and Statistics, Ningxia University, Ningxia 750021, P. R. China;
2. School of Mathematics and Statistics, Chifeng University, Inner Mongolia 024000, P. R. China

Abstract In the paper the new subclasses $\mathcal{N}^{a,b,c}_\mu(\lambda; \phi)$ and $\mathcal{M}^{a,b,c}_\lambda(\phi)$ of the function class \sum of bi-univalent functions involving the Hohlov operator are introduced and investigated. Then, the corresponding Fekete-Szegő functional inequalities as well as the bound estimates of the coefficients a_2 and a_3 are obtained. Furthermore, several consequences and connections to some of the earlier known results also are given.

Keywords Fekete-Szegő problem; analytic function; bi-univalent function; Gaussian hypergeometric function; Hohlov operator

MR(2010) Subject Classification 30C45; 30C50; 30C55

1. Introduction

For the set \mathbb{C} of complex numbers, let \mathcal{A} be the class of normalized analytic function $f(z)$ by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

in the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$.

Let \mathcal{S} denote the subclass of \mathcal{A} consisting of all functions which are univalent in Δ. Due to the Koebe one quarter theorem [1], the inverse f^{-1} of $f \in \mathcal{S}$ satisfies

$$f^{-1}(f(z)) = z, \quad z \in \Delta$$

and

$$f(f^{-1}(w)) = w, \quad w \in \Delta_\rho,$$

where $\rho \in [\frac{1}{4}, 1]$ denotes the radius of the image $f(\Delta)$ and $\Delta_\rho = \{z \in \mathbb{C} : |z| < \rho\}$. It is well known that

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots. \quad (1.2)$$
If the function \(f \in \mathcal{A} \) and its inverse \(f^{-1} \) are univalent in \(\Delta \), then it is bi-univalent. Denote by \(\Sigma \) the class of all bi-univalent functions \(f \in \mathcal{A} \) in \(\Delta \).

Given two analytic functions \(f \) and \(g \), if there exists an analytic \(w \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) for \(z \in \Delta \) so that \(f(z) = g(w(z)) \), then \(f \) is subordinate to \(g \), i.e., \(f \prec g \).

For given \(f, g \in \mathcal{A} \), define the Hadamard product or convolution \(f \ast g \) by

\[
(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad (z \in \Delta),
\]

where \(f(z) \) is given by Eq. (1.1) and \(g(z) = z + \sum_{k=2}^{\infty} b_k z^k \), and the Gaussian hypergeometric function \(\sum_{2F1(a,b,c,z)} \) by

\[
2F1(a,b,c;z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!} = 1 + \sum_{n=2}^{\infty} \frac{(a)_{n-1} (b)_{n-1}}{(c)_{n-1}} \frac{z^{n-1}}{(n-1)!}, \quad z \in \Delta
\]

for the complex parameters \(a, b \) and \(c \) with \(c \neq 0, -1, -2, -3, \ldots \), where \((\ell)_n\) denotes the Pochhammer symbol or shifted factorial by

\[
(\ell)_n = \frac{\Gamma(\ell+n)}{\Gamma(\ell)} = \begin{cases}
1, & \text{if } n = 0, \ell \in \mathbb{C} \setminus \{0\} \\
\ell(\ell+1)(\ell+2) \cdots (\ell+n-1), & \text{if } n \in \mathbb{N} \{1, 2, 3, \ldots\}.
\end{cases}
\]

Hohlov [2,3] ever considered the convolution operator \(T_c^{a,b} \) later named by himself as follows:

\[
T_c^{a,b} f(z) = z \sum_{2F1} (a,b,c;z) \ast f(z) = z + \sum_{n=2}^{\infty} p_n a_n z^n, \quad z \in \Delta,
\]

where

\[
p_n = \frac{(a)_{n-1} (b)_{n-1}}{(c)_{n-1} (n-1)!}.
\]

Here, we also note that there exist some reduced versions of Hohlov operator \(T_c^{a,b} \) for suitable parameters \(a, b \) and \(c \), for example, Carlson-Shaffer operator \(L(a,c) = T_c^{a,1} \) (see [4]), Ruscheweyh derivative operator \(D^\delta = \sum_{1+\delta} (\delta < 1) \) (see [5]), Owa-Srivastava fractional differential operator \(\Omega_{\mu} = \sum_{2+1} (0 \leq \mu < 1) \) (see [6,7]), Choi-Saigo-Srivastava operator \(\sum_{3+1} (-1 < \lambda, 0 \leq \mu) \) (see [8]), Noor integral operator \(\sum_{n+1} = \sum_{2+1} \) (see [9]).

In 1967, Lewin [10] introduced the analytic and bi-univalent function and proved that \(|a_2| < 1.51 \). Moreover, Brannan and Clunie [11] conjectured that \(|a_2| \leq \sqrt{2} \), and Netanyahu [12] obtained that \(\max f \sum |a_2| = \frac{3}{4} \). Later, Styer and Wright [13] showed that there exists function \(f(z) \) so that \(|a_2| > \frac{4}{5} \). However, so far the upper bound estimate \(|a_2| < 1.485 \) of coefficient for functions in \(\sum \) by Tan [14] is best. Unfortunately, as for the coefficient estimate problem for every Taylor-Maclaurin coefficient \(|a_n| (n \in \mathbb{N} \setminus \{1, 2\}) \) it is probably still an open problem.

For the work of Brannan and Taha [15] and Srivastava et al. [16], a great deal of subclasses of analytic and bi-univalent functions class \(\sum \) were introduced and investigated, and the non-sharp estimates of first two Taylor-Maclaurin coefficients \(|a_2| \) and \(|a_3| \) were given; refer to Deniz [17], Frasin and Aouf [18], Hayami and Owa [19], Li and Wang [20], Ma and Minda [21], Magesh and Yamini [22], Patil and Naik [23,24], Srivastava et al. [25,26], Tang et al. [27,28] and Xu et al. [29,30] for more detailed information. Recently, Srivastava et al. [31,32] gave some new
subclasses of the function class \sum of analytic and bi-univalent functions to unify the work of Deniz [17], Frasin [33], Srivastava et al. [34], Srivastava et al. [35], Keerthi and Raja [36] and Xu et al. [29], etc.

Since Fekete-Szegö [37] considered the determination of the sharp upper bounds for the subclass of S, Fekete-Szegö functional problem was studied in many classes of functions; refer to Orhan and Răducanu [38] for class of starlike functions, Abdel-Gawad [39] for class of quasi-convex functions, Magesh and Balaji [40] for class of convex and starlike functions, Koepf [41] for class of close-to-convex functions, Tang et al. [28] for classes of m-mold symmetric bi-univalent functions, Panigrahi and Raina [42] for class of quasi-subordination functions.

Besides, Murugusundaramoorthy et al. [35,43,44] and Patil and Naik [45] ever introduced and investigated several new subclasses of the function class \sum of analytic and bi-univalent functions associated with the Hohlov operator. Stimulated by the statements above, in the paper we will introduce and investigate the new subclasses of the function class \sum of analytic and bi-univalent functions involving the Hohlov operator, and consider the corresponding bound estimates of the coefficients a_2 and a_3 and Fekete-Szegö functional inequalities. Moreover, several consequences and connections to some of the earlier known results also will be given.

Now we will introduce the following general subclasses of bi-univalent functions.

Definition 1.1 A function $f(z) \in \sum$ given by (1.1), belongs to the class $\mathcal{N}_{\sum}^{a,b,c}(\mu, \lambda; \phi)$ if the following subordinations are satisfied:

\[
(1 - \lambda) \left(\frac{T_{a,b} f(z)}{z} \right)^\mu + \lambda \left(\frac{T_{a,b} f(z)}{z} \right)^{\mu - 1} < \phi(z)
\]

and

\[
(1 - \lambda) \left(\frac{T_{a,b} g(w)}{w} \right)^\mu + \lambda \left(\frac{T_{a,b} g(w)}{w} \right)^{\mu - 1} < \phi(w)
\]

for $z, w \in \Delta$, where $\mu, \lambda \in [0, \infty)$ satisfy $\mu^2 + \lambda^2 > 0$ and the function g is the inverse of f given by (1.2).

Definition 1.2 A function $f(z) \in \sum$ given by (1.1), belongs to the class $\mathcal{M}_{\sum}^{a,b,c}(\lambda; \phi)$ if the following subordinations are satisfied:

\[
(1 - \lambda) \left(\frac{T_{a,b} f(z)}{I_{a,b} f(z)} \right)^\mu + \lambda \left(\frac{T_{a,b} f(z)}{I_{a,b} f(z)} \right)^{\mu - 1} < \phi(z)
\]

and

\[
(1 - \lambda) \left(\frac{T_{a,b} g(w)}{I_{a,b} g(w)} \right)^\mu + \lambda \left(\frac{T_{a,b} g(w)}{I_{a,b} g(w)} \right)^{\mu - 1} < \phi(w)
\]

for $z, w \in \Delta$, where $0 \leq \lambda \leq 1$ and the function g is the inverse of f given by (1.2).

Remark 1.3 Let

\[
\phi(z) = \left(\frac{1 + z}{1 - z} \right)^\alpha \text{ for } 0 < \alpha \leq 1
\]
or
\[
\phi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad \text{for } 0 \leq \beta < 1
\]

(1.12)

in Definitions 1.1 and 1.2. The class \(N^{a,b,c}_\lambda(\mu, \phi) \) (resp., \(M^{a,b,c}_\lambda(\mu, \phi) \)) reduces to \(\hat{N}^{a,b,c}_\lambda(\mu, \lambda; \alpha) \) (resp., \(\hat{M}^{a,b,c}_\lambda(\lambda; \alpha) \)). Further, if \(a = c \) and \(b = 1 \), then the classes \(N^{a,b,c}_\lambda(\mu, \phi) \) and \(M^{a,b,c}_\lambda(\lambda; \phi) \) are just \(N^{a,1,a}_\lambda(\mu, \phi) = N^{0}_\lambda(\mu, \phi) \) and \(M^{1,a}_\lambda(\lambda; \phi) = M^{\Delta}_\lambda(\lambda; \phi) \), respectively; refer to Tang et al. [27] and Ali et al. [46].

Lemma 1.4 ([1, 47]) Let \(P \) be the class of all analytic functions \(h(z) \) of the following form

\[
h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n, \quad z \in \Delta
\]

satisfying \(\Re h(z) > 0 \) and \(h(0) = 1 \). Then the sharp estimates \(|c_n| \leq 2 \) (\(n \in \mathbb{N} \)). Particularly, the equality holds for all \(n \) for the next function

\[
h(z) = \frac{1 + z}{1 - z} = 1 + \sum_{n=1}^{\infty} 2z^n.
\]

2. Coefficient estimates for the class \(N^{a,b,c}_\lambda(\mu, \phi) \)

Define the functions \(s \) and \(t \) in \(P \) by

\[
s(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + \sum_{n=1}^{\infty} c_n z^n, \quad t(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + \sum_{n=1}^{\infty} d_n w^n, \quad z, w \in \Delta.
\]

(2.1)

Therefore, from (2.1) we infer that

\[
u(z) = \frac{s(z) - 1}{s(z) + 1} = \frac{c_1}{1} z + \frac{1}{1} \left(c_2 - \frac{c_1^2}{2} \right) z^2 + \cdots, \quad z \in \Delta
\]

(2.2)

and

\[
v(w) = \frac{t(w) - 1}{t(w) + 1} = \frac{d_1}{1} w + \frac{1}{1} \left(d_2 - \frac{d_1^2}{2} \right) w^2 + \cdots, \quad w \in \Delta.
\]

(2.3)

Let \(\phi \in P \) with \(\phi'(0) > 0 \) satisfying \(\phi(\Delta) \) being symmetric with respect to the real axis. Assume that the series expansion form of \(\phi \) is denoted by

\[
\phi(z) = 1 + \sum_{n=1}^{\infty} E_n z^n, \quad E_1 > 0, \quad z \in \Delta.
\]

(2.4)

By (2.2–2.4), it follows that

\[
\phi(u(z)) = 1 + \frac{1}{2} E_1 c_1 z + [\frac{1}{2} E_1 (c_2 - \frac{c_1^2}{2}) + \frac{1}{4} E_2 c_1^2] z^2 + \cdots, \quad z \in \Delta
\]

(2.5)

and

\[
\phi(v(w)) = 1 + \frac{1}{2} E_1 d_1 w + [\frac{1}{2} E_1 (d_2 - \frac{d_1^2}{2}) + \frac{1}{4} E_2 d_1^2] w^2 + \cdots, \quad w \in \Delta.
\]

(2.6)

Now we consider the coefficient estimates for the class \(N^{a,b,c}_\lambda(\mu, \phi) \) and establish the next theorem.
Functions

Obviously, from (2.5), (2.6) and (2.10)–(2.13), we obtain that

$$|a_2| \leq \min \left\{ \frac{E_1}{(\lambda + \mu)p_2}, \sqrt{\frac{E_1}{2(\lambda + \mu)(\mu - 1)p_2^2 + p_3}}, \frac{E_1^{3/2}}{\sqrt{|\Phi|}} \right\} \quad (2.7)$$

and

$$|a_3| \leq \frac{E_1}{(\lambda + \mu)p_3} + \min \left\{ \frac{E_1^2}{(\lambda + \mu)^2p_2^2}, \frac{2(|E_1| + |E_2 - E_1|)}{(2\lambda + \mu)(\mu - 1)p_2^2 + 2p_3) \right\}, \quad (2.8)$$

where

$$\Phi = \Phi(\lambda, \mu, E_1, E_2, p_2, p_3) = (2\lambda + \mu)\frac{1}{2}(\mu - 1)p_2^2 + p_3|E_1^2 + (E_1 - E_2)(\lambda + \mu)^2p_2^2. \quad (2.9)$$

Proof Assume that \(f(z) \in \Lambda^{a,b,c}(\mu, \lambda; \phi) \). Hence, by Definition 1.1 there exist two analytic functions \(u(z), v(z) : \Delta \to \Delta \) with \(u(0) = 0 \) and \(v(0) = 0 \) so that

$$1 - \lambda \left(\frac{T_{a,b}f(z)}{z} \right)^\mu + \lambda(T_{a,b}f)'(z)\left(\frac{T_{a,b}f(z)}{z} \right)^{\mu-1} = \phi(u(z)) \quad (2.10)$$

and

$$1 - \lambda \left(\frac{T_{a,b}g(w)}{w} \right)^\mu + \lambda(T_{a,b}g)'(w)\left(\frac{T_{a,b}g(w)}{w} \right)^{\mu-1} = \phi(v(w)). \quad (2.11)$$

Expanding the left half parts of (2.10) and (2.11), we have that

$$1 - \lambda \left(\frac{T_{a,b}f(z)}{z} \right)^\mu + \lambda(T_{a,b}f)'(z)\left(\frac{T_{a,b}f(z)}{z} \right)^{\mu-1}$$

$$= 1 + (\lambda + \mu)p_2a_2z + (2\lambda + \mu)\left(\frac{1}{2}(\mu - 1)p_2^2a_2^2 + p_3a_3 \right)z^2 + \cdots \quad (2.12)$$

and

$$1 - \lambda \left(\frac{T_{a,b}g(w)}{w} \right)^\mu + \lambda(T_{a,b}g)'(w)\left(\frac{T_{a,b}g(w)}{w} \right)^{\mu-1}$$

$$= 1 - (\lambda + \mu)p_2a_2w + (2\lambda + \mu)\left(\frac{1}{2}[(\mu - 1)p_2^2 + 4p_3)a_2^2 - p_3a_3 \right)w^2 + \cdots \quad (2.13)$$

Obviously, from (2.5), (2.6) and (2.10)–(2.13), we obtain that

$$\lambda + \mu)p_2a_2 = \frac{E_1c_1}{2}, \quad (2.14)$$

$$(2\lambda + \mu)\left[\frac{1}{2}(\mu - 1)p_2^2a_2^2 + p_3a_3 \right] = \frac{1}{2}(c_2 - \frac{c_1^2}{2})E_1 + \frac{1}{4}c_1^2E_2, \quad (2.15)$$

$$-(\lambda + \mu)p_2a_2 = \frac{E_1d_1}{2} \quad (2.16)$$

and

$$2(\lambda + \mu)\left[\frac{1}{2}[(\mu - 1)p_2^2 + 4p_3)a_2^2 - p_3a_3 \right] = \frac{1}{2}(d_2 - \frac{d_1^2}{2})E_1 + \frac{1}{4}d_1^2E_2. \quad (2.17)$$

From (2.14) and (2.16), we know that

$$a_2 = \frac{E_1c_1}{2p_2(\lambda + \mu)} = -\frac{E_1d_1}{2p_2(\lambda + \mu)} = \frac{E_1d_1}{2p_2(\lambda + \mu)}. \quad (2.18)$$
which derives
\[c_1 = -d_1 \]
(2.19)
and
\[E_1^2(c_1^2 + d_1^2) = 8(\lambda + \mu)^2p_2^2a_2^2. \]
(2.20)
By (2.15) and (2.17), we have that
\[c_1^2(E_2 - E_1) + E_1(c_2 + d_2) = 2(2\lambda + \mu)[(\mu - 1)p_2^2 + 2p_3]a_1^2. \]
(2.21)
Therefore, from (2.19)-(2.21) we obtain
\[a_2^2 = \frac{(c_2 + d_2)E_1^3}{2(2\lambda + \mu)[(\mu - 1)p_2^2 + 2p_3](E_1^2 + 4(E_1 - E_2)(\lambda + \mu)^2p_2^2)}. \]
(2.22)
Hence, by Lemma 1.4 we may remark that
\[|a_2| \leq \frac{E_1^{3/2}}{\sqrt{|\Phi|}}. \]
In addition, from (2.20) and (2.21) we get that
\[|a_2| \leq \frac{E_1}{(\lambda + \mu)|p_2|} \]
and
\[|a_2| \leq \sqrt{\frac{E_1 + |E_2 - E_1|}{(2\lambda + \mu)(\mu - 1)p_2^2 + p_3}}, \]
which yield the desired results on $|a_2|$ in (2.7).
Similarly, (2.15) and (2.17) imply that
\[E_1(c_2 - d_2) = 4(2\lambda + \mu)p_3(a_3 - a_2^2). \]
(2.23)
Then, by (2.19), (2.20) and (2.23), it follows that
\[a_3 = \frac{E_1(c_2 - d_2)}{4(2\lambda + \mu)p_3} + \frac{E_1^2(c_1^2 + d_1^2)}{8(\lambda + \mu)^2p_2^2}. \]
So, we obtain from Lemma 1.4 that
\[|a_3| \leq \frac{E_1}{(2\lambda + \mu)|p_3|} + \frac{E_1^2}{(\lambda + \mu)^2p_2^2}. \]
On the other hand, by (2.21) and (2.23) we infer that
\[a_3 = \frac{2[c_1^2(E_2 - E_1) + E_1(c_2 + d_2)|p_3 + E_1(c_2 - d_2)[(\mu - 1)p_2^2 + 2p_3]}{4(2\lambda + \mu)|p_3|[(\mu - 1)p_2^2 + 2p_3}|. \]
Thus, from Lemma 1.4 we see that
\[|a_3| \leq \frac{E_1}{(2\lambda + \mu)|p_3|} + \frac{2(E_1 + |E_2 - E_1|)}{(2\lambda + \mu)(\mu - 1)p_2^2 + 2p_3} \]
\[\Box \]
When $\mu = 1$, $\mathcal{A}_{\Sigma}^{a,b,c}((1, \lambda; \phi)) = \mathcal{A}_{\Sigma}^{a,b,c}(\lambda; \phi)$. Hence, by Theorem 2.1 we immediately get the next corollary.
If $f(z)$ given by (1.1) belongs to the class $N^{a,b,c}_\Sigma(\lambda; \phi)$, then

$$|a_2| \leq \min\left\{ \frac{E_1}{(1+\lambda)|p_2|}, \sqrt{\frac{E_1 + |E_2 - E_1|}{(1+2\lambda)|p_3|}}, \frac{E_1^{3/2}}{|\Phi|} \right\}$$

and

$$|a_3| \leq \frac{E_1}{(1+2\lambda)|p_3|} + \min\left\{ \frac{E_1^2}{(1+\lambda)^2|p_2|^2}, \frac{(E_1 + |E_2 - E_1|)}{(1+2\lambda)|p_3|} \right\},$$

where

$$\Phi = \Phi(\lambda, E_1, E_2, p_2, p_3) = (1+2\lambda)E_1^2p_3 + (E_1 - E_2)(1+\lambda)^2p_2^2.$$

Remark 2.3 Moreover, under the conditions of the parameters $a = c$ and $b = 1$ and Remark 1.3, if we choose some suitable parameters μ and λ as well as ϕ, we also provide the following reduced versions for $N^{a,b,c}_\Sigma(\mu, \lambda; \phi)$ in Theorem 2.1:

(i) $N^{a,1,a}_\Sigma(\mu, \lambda; \alpha) = H(a, \theta, \lambda, \alpha) = H(a, \lambda, \beta)$, refer to Çağlar et al. [48];

(ii) $N^{a,1,a}_\Sigma(1, \lambda; \phi) = H(a, \lambda, \phi), N^{a,1,a}_\Sigma(\mu, 1; \phi) = H\Sigma(\phi)$, refer to Kumar et al. [49];

(iii) $N^{a,1,a}_\Sigma(1, 1; \phi) = H(a, \lambda, \beta)$, refer to Ali et al. [46];

(iv) $N^{a,1,a}_\Sigma(1, \lambda; \alpha) = B(\alpha, \lambda, \beta), N^{a,1,a}_\Sigma(1, \lambda; \beta) = B(\beta, \lambda)$, refer to Frasin and Aouf [18];

(v) $N^{a,1,a}_\Sigma(1, 1; \alpha) = B(\alpha, \lambda, \beta), N^{a,1,a}_\Sigma(1, 1; \beta) = B(\beta, \lambda)$, refer to Srivastava et al. [16].

Next, we will consider Fekete-Szegö functional problems for the class $N^{a,b,c}_\Sigma(\mu, \lambda; \phi)$.

Corollary 2.4 If $f(z)$ given by (1.1) belongs to the class $N^{a,b,c}_\Sigma(\mu, \lambda; \phi)$ and $\rho \in \mathbb{R}$, then

$$|a_3 - \rho a_2^2| \leq \begin{cases} \frac{E_1}{(1+\rho)p_3}, & \text{if } (2\lambda + \mu)(1-\rho)p_3|E_1^2| \leq |\Phi| \\ \frac{E_1}{|\Phi|}, & \text{if } (2\lambda + \mu)(1-\rho)p_3|E_1^2| \geq |\Phi|, \end{cases}$$

where $\Phi = \Phi(\lambda, \mu, E_1, E_2, p_2, p_3)$ is the same as in Theorem 2.1.

Proof From (2.23), it follows that

$$a_3 - a_2^2 = \frac{E_1(c_2 - d_2)}{4(2\lambda + \mu)p_3}.$$

By (2.22) we easily obtain that

$$a_3 - \rho a_2^2 = \frac{E_1\{(1-\rho)(2\lambda + \mu)p_3E_1^2 + \Phi\}c_2 + [(1-\rho)(2\lambda + \mu)p_3E_1^2 - \Phi]d_2}{4(2\lambda + \mu)p_3\Phi}.$$

Hence, from Lemma 1.4 it follows

$$|a_3 - \rho a_2^2| \leq \begin{cases} \frac{E_1}{(1+\rho)p_3}, & \text{if } (2\lambda + \mu)(1-\rho)p_3|E_1^2| \leq |\Phi|; \\ \frac{E_1}{|\Phi|}, & \text{if } (2\lambda + \mu)(1-\rho)p_3|E_1^2| \geq |\Phi|. \end{cases}$$

Corollary 2.5 If $f(z)$ given by (1.1) belongs to the class $N^{a,b,c}_\Sigma(\mu, \lambda; \phi)$, then

$$|a_3 - a_2^2| \leq \frac{E_1}{(2\lambda + \mu)p_3},$$

Corollary 2.6 If $f(z)$ given by (1.1) belongs to the class $N^{a,b,c}_\Sigma(\mu, \lambda; \phi)$, then

$$|a_3| \leq \begin{cases} \frac{E_1}{(2\lambda + \mu)p_3}, & \text{if } (2\lambda + \mu)|p_3|E_1^2 \leq |\Phi|; \\ \frac{E_1}{|\Phi|}, & \text{if } (2\lambda + \mu)|p_3|E_1^2 \geq |\Phi|. \end{cases}$$
where $\Phi = \Phi(\lambda, \mu, E_1, E_2, p_2, p_3)$ is the same as in Theorem 2.1.

Remark 2.7 Without Hohlav operator, we may refer to the subclass $B_{\Sigma,m}(\lambda; \phi)$ of m-fold symmetric bi-univalent functions (see Tang et al. [28] for Remark 2.7).

Hence, with (2.5), (2.6) and (3.4)–(3.7), we deduce that

3. Coefficient estimates for the class $M_{\Sigma}^{a,b,c}(\lambda; \phi)$

Now we study the coefficient estimates for the class $M_{\Sigma}^{a,b,c}(\lambda; \phi)$ and give the next theorem.

Theorem 3.1 If $f(z)$ given by (1.1) belongs to the class $M_{\Sigma}^{a,b,c}(\lambda; \phi)$, then

$$|a_2| \leq \min \left\{ \frac{E_1}{(1 + \lambda)|p_2|}, \sqrt{\frac{E_1 + |E_2 - E_1|}{2(1 + 2\lambda)p_3 - (1 + 3\lambda)p_2^2}}, \frac{E_1^3/2}{\sqrt{\Theta}} \right\}$$

and

$$|a_3| \leq \frac{E_1}{2(1 + 2\lambda)|p_3|} + \min \left\{ \frac{E_1^2}{(1 + \lambda)^2p_2^2}, \frac{E_1 + |E_2 - E_1|}{2(1 + 2\lambda)p_3 - (1 + 3\lambda)p_2^2} \right\},$$

where

$$\Theta = \Theta(\lambda, E_1, E_2, p_2, p_3) = |2(1 + 2\lambda)p_3 - (1 + 3\lambda)p_2^2|E_1^2 + (E_1 - E_2)(1 + \lambda)^2p_2^2.$$

Proof Assume that $f(z) \in M_{\Sigma}^{a,b,c}(\lambda; \phi)$. Then, by Definition 1.2 there exist two analytic functions $u(z), v(z) : \Delta \rightarrow \Delta$ with $u(0) = 0$ and $v(0) = 0$ so that

$$(1 - \lambda)\frac{z(T_c^a b f)'(z)}{T_c^a b f(z)} + \lambda(1 + \frac{z(T_c^a b f)''(z)}{T_c^a b f(z)}) = \phi(u(z))$$

and

$$(1 - \lambda)\frac{w(T_c^a b g)'(w)}{T_c^a b g(w)} + \lambda(1 + \frac{w(T_c^a b g)''(w)}{(T_c^a b g)'(w)}) = \phi(v(w)).$$

Expanding the left half parts of (3.4) and (3.5), we obtain that

$$= 1 + (1 + \lambda)p_2a_2 + [2(1 + 2\lambda)p_3a_3 - (1 + 3\lambda)p_2^2a_2^2]z^2 + \cdots$$

and

$$= 1 - (1 + \lambda)p_2a_2 + \{2(1 + 2\lambda)p_3(2a_2^3 - a_3) - (1 + 3\lambda)p_2^2a_2^2\}w^2 + \cdots.$$

Hence, with (2.5), (2.6) and (3.4)–(3.7), we deduce that

$$E_1c_1 = \frac{E_1c_1}{2},$$

$$2(1 + 2\lambda)p_3a_3 - (1 + 3\lambda)p_2^2a_2^2 = \frac{1}{2}(c_2 - \frac{c_1^2}{2})E_1 + \frac{1}{4}c_1^2E_2.$$
\[-(1 + \lambda)p_2 a_2 = \frac{E_1 d_1}{2}\] (3.10)

and

\[2(1 + 2\lambda)p_3(2a_3^2 - a_3) - (1 + 3\lambda)p_2 a_2^2 = \frac{1}{2} (d_2 - \frac{d_1^2}{2}) E_1 + \frac{1}{4} d_1^2 E_2.\] (3.11)

From (3.8) and (3.10), we know that

\[a_2 = \frac{E_1 c_1}{2p_2(1 + \lambda)} = - \frac{E_1 d_1}{2p_2(1 + \lambda)},\] (3.12)

which implies

\[c_1 = -d_1\] (3.13)

and

\[E_1^2 (c_1^2 + d_1^2) = 8(1 + \lambda)^2 p_2^2 a_2^2.\] (3.14)

By (3.9), (3.11) and (3.13), we have that

\[c_1^2(E_2 - E_1) + E_1(c_2 + d_2) = 8(1 + 2\lambda)p_3 a_2^2 - 4(1 + 3\lambda)p_2 a_2^2.\] (3.15)

Therefore, from (3.12)–(3.15) we obtain

\[a_2 = \frac{(c_2 + d_2)E_1^3}{8(1 + 2\lambda)p_3 - 4(1 + 3\lambda)p_2^2 |E_1^2 + (E_1 - E_2)(1 + \lambda)^2 p_2^2|}.\] (3.16)

Hence, by Lemma 1.4 we derive

\[|a_2| \leq \frac{E_1^3/2}{\sqrt{|2(1 + 2\lambda)p_3 - (1 + 3\lambda)p_2^2 |E_1^2 + (E_1 - E_2)(1 + \lambda)^2 p_2^2|}}.\]

In addition, from (3.14) and (3.15) we get that

\[|a_2| \leq \frac{E_1}{(1 + \lambda)|p_2|}\]

and

\[|a_2| \leq \sqrt{\frac{E_1 + |E_2 - E_1|}{2(1 + 2\lambda)p_3 - (1 + 3\lambda)p_2^2}},\]

which yield the desired results on \(|a_2|\) in (3.1).

Similarly, from (3.9) and (3.11), it follows

\[E_1(c_2 - d_2) = 8(1 + 2\lambda)p_3 (a_3 - a_2^2).\] (3.17)

Then, by (3.13), (3.14) and (3.17), one gets

\[a_3 = \frac{E_1(c_2 - d_2)}{8(1 + 2\lambda)p_3} + \frac{E_1^2 (c_1^2 + d_1^2)}{8(1 + \lambda)^2 p_2^2}\]

So, we obtain from Lemma 1.4 that

\[|a_3| \leq \frac{E_1}{2(1 + 2\lambda)|p_3|} + \frac{E_1^2}{(1 + \lambda)^2 p_2^2}.\]
On the other hand, by (3.15) and (3.17) we infer that

\[
a_3 = \frac{E_1(c_2 - d_2)}{8(1 + 2\lambda)p_3} + \frac{c_1^2(E_2 - E_1) + E_1(c_2 + d_2)}{8(1 + 2\lambda)^2p_3 - 4(1 + 3\lambda)p_2^2}.
\]

Thus, from Lemma 1.4 we see that

\[
|a_3| \leq \frac{E_1}{2(1 + 2\lambda)|p_3|} + \frac{E_1 + |E_2 - E_1|}{2(1 + 2\lambda)p_3 - (1 + 3\lambda)p_2^2}. \quad \Box
\]

Remark 3.2 Clearly, under the conditions of the parameters \(a = c\) and \(b = 1\) and Remark 1.3, if we take some suitable parameter \(\lambda\) and \(\phi\), we also provide the following reduced versions for \(\mathcal{M}^{a,b,c}_\Sigma(\mu;\lambda;\phi)\) in Theorem 3.1:

(i) \(\mathcal{M}^{a,1,a}_\Sigma(\phi) = \mathcal{M}^\Sigma(\phi)\), refer to Ali et al. [46];

(ii) \(\mathcal{M}^{a,1,a}_\Sigma(1;\alpha), \mathcal{M}^{a,1,a}_\Sigma(1;\beta)\), or \(\mathcal{M}^{a,1,a}_\Sigma(0;\alpha)\) and \(\mathcal{M}^{a,1,a}_\Sigma(0;\beta)\), refer to Brannan and Taha [15].

Theorem 3.3 If \(f(z)\) given by (1.1) belongs to the class \(\mathcal{M}^{a,b,c}_\Sigma(\lambda;\phi)\) and \(\rho \in \mathbb{R}\), then

\[
|a_3 - \rho a_2^2| \leq \frac{E_1}{4(1 + 2\lambda)|p_3|}, \quad \text{if} \quad 2(1 + 2\lambda)(1 - \rho)p_3|E_2^2| \leq |\Theta|;
\]

\[
\left\{ \frac{E_1}{4(1 + 2\lambda)|p_3|}, \quad \text{if} \quad 2(1 + 2\lambda)(1 - \rho)p_3|E_2^2| > |\Theta|, \right. \quad \text{if} \quad 2(1 + 2\lambda)(1 - \rho)p_3|E_2^2| \geq |\Theta|\right\}.
\]

where \(\Theta = \Theta(\lambda, E_1, E_2, p_2, p_3)\) is the same as in Theorem 3.1.

Proof From (3.17), it follows that

\[
a_3 - a_2^2 = \frac{E_1(c_2 - d_2)}{8(1 + 2\lambda)p_3}.
\]

By (3.16) we easily obtain that

\[
a_3 - \rho a_2^2 = \frac{E_1([2(1 - \rho)(1 + 2\lambda)p_3|E_2^2| + \Theta|c_2 + |2(1 - \rho)(1 + 2\lambda)p_3|E_2^2 - \Theta|d_2]}}{8(1 + 2\lambda)p_3}. \quad (3.19)
\]

Then, from Lemma 1.4 we show that

\[
|a_3 - \rho a_2^2| \leq \left\{ \frac{E_1}{4(1 + 2\lambda)|p_3|}, \quad \text{if} \quad 2(1 + 2\lambda)(1 - \rho)p_3|E_2^2| \leq |\Theta|; \right. \quad \text{if} \quad 2(1 + 2\lambda)(1 - \rho)p_3|E_2^2| \geq |\Theta|, \quad \Box
\]

Corollary 3.4 If \(f(z)\) given by (1.1) belongs to the class \(\mathcal{M}^{a,b,c}_\Sigma(\lambda;\phi)\), then

\[
|a_3 - a_2^2| \leq \frac{E_1}{4(1 + 2\lambda)|p_3|}.
\]

Corollary 3.5 If \(f(z)\) given by (1.1) belongs to the class \(\mathcal{M}^{a,b,c}_\Sigma(\lambda;\phi)\), then

\[
|a_3| \leq \left\{ \frac{E_1}{4(1 + 2\lambda)|p_3|}, \quad \text{if} \quad 2(1 + 2\lambda)|p_3|E_2^2| \leq |\Theta|; \right. \quad \text{if} \quad 2(1 + 2\lambda)|p_3|E_2^2| \geq |\Theta|\right\}
\]

where \(\Theta = \Theta(\lambda, E_1, E_2, p_2, p_3)\) is the same as in Theorem 3.3.

Remark 3.6 Similarly, without Hohlov operator we may refer to the subclass \(\mathcal{M}^{a,b,c}_\Sigma(\lambda;\phi)\) of \(m\)-fold symmetric bi-univalent functions (see Tang et al. [28] for \(m = 1\)) for Fekete-Szegö functional problems about \(\mathcal{M}^{a,b,c}_\Sigma(\lambda;\phi)\).
Acknowledgements

We thank the referees for their time and comments so that this article is greatly improved.

References

