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Abstract The aim of this article is to study the structures of arbitrary split 6-Jordan Lie
triple systems, which are a generalization of split Lie triple systems. By developing techniques
of connections of roots for this kind of triple systems, we show that any of such é-Jordan Lie
triple systems T with a symmetric root system is of the form T'=U + Z[Q]EM/N Ijo) with U a
subspace of Tp and any Ij,) a well described ideal of T', satisfying {I[o}, T, I;3)} = {1ja], L1, T} =
{T, I1eg, I} = 0 if [o] # [B].
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1. Introduction

The concept of Lie triple systems (LTSs) was introduced by Nathan Jacobson in 1949 to study
subspaces of associative algebras closed under triple commutators [[u,v], w]. The role played by
LTSs in the theory of symmetric spaces is parallel to that of Lie algebras in the theory of Lie
groups: the tangent space at every point of a symmetric space has the structure of a Lie triple
system (LTS). Because of close relation to Lie algebras and theoretical physics, LTSs are widely
studied recently [1-3]. The notion of d-Jordan Lie triple systems (§-JLTSs) was introduced by
Susumu Okubo in 1997 (see [4]). The case of 6 = 1 implies §-JLTSs are LTSs and the other
case of 6 = —1 gives Jordan Lie triple systems. So a question arises whether some known results
on LTSs can be extended to the framework of §-JLTSs. 6-JLTSs are the natural generalization
of LTSs and have important applications. Recently, deformations, nijenhuis operators, abelian
extensions and T*-extensions of §-JLTSs are studied [5].

In the present paper, we are interested in studying the structures of arbitrary §-JLTSs by
focussing on the split ones. The class of the split ones is specially related to addition quantum
numbers, graded contractions, and deformations. Recently, in [6-12], the structures of arbitrary
split Lie algebras, arbitrary split Leibniz algebras, arbitrary split LTSs, arbitrary split Leibniz
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triple systems and arbitrary graded Leibniz triple systems have been determined by the tech-
niques of connections of roots. Our work is essentially motivated by the work on split LTSs [6].

Throughout this paper, 6-JLTSs T" are considered of arbitrary dimension and over an arbitrary
base field K. It is worth to mention that, unless otherwise stated, there is not any restriction
on dim7,, or {k € K: ka € A!, for a fixed o € A'}, where T,, denotes the root space associated
to the root o, and A! the set of nonzero roots of T. This paper proceeds as follows. In Section
2, we establish the preliminaries on split J-JLTSs theory. In Section 3, we show that such an
arbitrary 0-JLTSs with a symmetric root system is of the form 7" = U + Z[a]eAl/N Ijo) with U a
subspace of Ty and any Ij,) a well described ideal of T', satisfying {I[o), T, 51} = {I[a]; {15, T} =
{T, Loy i} = 0 if [o] # [B].

2. Preliminaries
First we recall the definitions of §-Jordan Lie algebra and d-Jordan Lie triple system.

Definition 2.1 ([4]) A ¢-Jordan Lie algebra L is a vector space over a field K endowed with a
bilinear map [-,-] : L x L — L satisfying

(1) [1‘7y} = —6[y,l']7 §= :I:17

(2) [ [y, 2l + [y, [z, 2]l + [z, [2,9]] = 0, Vo, y, 2 € L.

Remark 2.2 ([4]) A ¢-Jordan Lie algebra L is called a Lie algebra if 6 = 1, and a §-Jordan Lie
algebra L is called a Jordan Lie algebra if 6 = —1.

Definition 2.3 ([4]) A §-JLTS is a vector space T endowed with a trilinear operation {-,-,-} :
T xT xT — T satistying

(1) {z,y,z} = —=0{y,z, 2}, 6 = £1,
(2) {x,y,z} + {y,z,:c} + {z,x,y} =0,

(3) {z,y.{a,b,c}} = {{z,y,a},b,c} + {a, {2, y, b}, c} + 6{a,b,{z,y,c}},
for x,y,z,a,b,c € T.

When § =1, a 6-JLTS is a LTS. So LTSs are special examples of -JLT'Ss.

Example 2.4 If L is a §-Jordan Lie algebra with product [-, -], then L becomes a §-JLTS by
putting {z,y, 2} = [[z,y], 2].

Definition 2.5 Let I be a subspace of a §-JLTS T. Then I is called a subsystem of T, if
{I,I,I} CI; I iscalled an ideal of T, if {I,T,T} C I.

Definition 2.6 ([4]) The standard embedding of a 6-JLTS T is the Zs-graded §-Jordan Lie

algebra L = L° @ L', L° being the K-span of {L(z,y).x,y € T}, where L(z,y) denotes the left

multiplication operator in T, L(z,y)(z) := {z,y, z}; L' := T and where the product is given by
[(L(2,y), 2), (L(u,v), w)] := (L({u,v,y},x) — L{u,v,2},y) + L(z,w),{z,y,w} — 6{u,v,z}).

Let us observe that L° with the product induced by the one in L = L° @ L' becomes a §-Jordan
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Lie algebra.

Definition 2.7 Let T be a 6-JLTS, L = L° @ L' be its standard embedding, and H° be a
maximal abelian subalgebra (MASA) of L°. For a linear functional o € (H°)*, we define the root
space of T' (with respect to H) associated to « as the subspace Ty, := {t,, € T : [h,ts] = a(h)ta
for any h € H°}. The elements o € (H°)* satisfying T, # 0 are called roots of T' with respect
to HY and we denote A' := {a € (H°)* \ {0} : T,, # 0}.

Let us observe that Ty = {tg € T : [h,to] = 0 for any h € H%}. In the following, we shall
denote by A° the set of all nonzero a € (H®)* such that LS := {00 € L : [h,02] = a(h)v? for
any h € H°} # 0.

Lemma 2.8 Let T be a 6-JLTS, L = L° ® L' be its standard embedding, and H° be an MASA
of L°. For o, 3,7 € AL U{0} and &,q € A° U {0}, the following assertions hold.

(1) If [T,,Ts) # 0, then §(a+ B) € A° U {0} and [T,, T3] C Lg(a+3).

(2) If[LY,Ta] # 0, then §(§ +a) € A U {0} and [LE, T,] C Ts(¢ta)-

(3) If [Ta, LY # 0, then §(a + &) € A U {0} and [T, Lg] C Tsate)-

(4) If[Lg, Lg] # 0, then 6(§ + q) € A° U {0} and [LE, Lg] € LY, -

(5) If{T,, Ts, T} # 0, then a+p+d0v € A'U{0} and {T, T5, Ty} C Ts201626+6 = Latptoy-

Proof (1) For any # € T,, y € Ts and h € H°, by Definition 2.1 (2), one has [h, [z,y]] =
S[z, [h, yl] + 0[[h, z], y] = o[z, B(h)y] + d[a(h)z, y] = (e + B)(h)[z, y].

(2) For any z € L2, y € T, and h € H°, by Definition 2.1 (2), one has [h,[z,y]] =
olz, [h,yl] + o[[h, =], y] = O[x, a(h)y] + 0[E(h)z, y] = 6(¢ + @) (h) [z, y].

(3) For any # € T,, y € LY, and h € H°, by Definition 2.1 (2), one has [h,[z,y]] =
Olz, [h, yl] + 0[[h, =], y] = o[z, £(h)y] + dla(h)z, y] = d(a + §)(h)[x, y].

(4) For any = € L2, y € L) and h € H°, by Definition 2.1 (2), one has [h, [z,y]] =
Sla, [h, yl] + 6[[h, =], y] = b[x, q(h)y] + 6[§(h)x, y] = 6(§ + @) (h) [z, y].

(5) It is a consequence of Lemma 2.8 (1) and (2). O

Definition 2.9 Let T be a 6-JLTS, L = L° @ L! be its standard embedding, and H° be a
MASA of L°. We shall call that T is a split §-JLTS (with respect to H®) if T = To ® (BaerrTw)-
We say that A' is the root system of T.

We also note that the facts H* C L° = [T, T] and T = Ty & (Daenr ) imply

H = [Ty, T + > [Ta, T-al. (2.1)
acAl

Finally, as [Ty, Ty] C LY = H°, we have
{Ty, To, To} = 0. (2.2)
Similarly, we also have

(T, T_o, T} =0. (2.3)
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Definition 2.10 A root system A' of a split 6-JLTS T is called symmetric if it satisfies that
a € A implies —a € AL,

A similar concept applies to the set A® of nonzero roots of L°.

In the following, T" denotes a split 6-JLTS with a symmetric root system A!, and T =
To ® (Baenr Ty ) the corresponding root decomposition. We begin the study of split 6-JLTS by

developing the concept of connections of roots.

Definition 2.11 Let a and 8 be two nonzero roots. We shall say that o and 3 are connected
if there exists a family {a1, ag, . .., Qop, @onit1} C AL U {0} of roots of T such that

(1) {a1,8%a1+8%as+8as, tar +6tag+83as+82as+das, . .., 62 ay+- - -+8%aa, +as,41} C
AL

(2) {day + dag, 83y + 83an + 0%az + Say, ..., 02" Lag + -+ + bag, } C A

(3) a1 =« and 6*"ay + -+ - + %aay, + daon 1 € 1.
We shall also say that {ay, o, ..., asp,, Qant1} iS a connection from « to S.

Let AL := {8 € A! : @ and 3 are connected}. We can easily get that {a} is a connection

from « to itself and to —a. Therefore, +a € AL.

Definition 2.12 A subset Q' of a root system A', associated to a split §-JLTS T, is called
a root subsystem if it is symmetric, and for «, 3,y € Q' U {0} such that §(a + 8) € A° and
a4+ B4y €A then a+ B+ 6y € QL.
Let Q! be a root subsystem of A'. We define
To.on = spang {{Tn, T35, Ty} : .+ B+ 07 =0; a,B,7v € Q' U{0}} C Tp

and Vo1 := Baea1Ts. Taking into account the fact that {Tp, Ty, To} = 0, it is straightforward
to verify that To: := T g1 @ Var is a subsystem of 7. We will say that T: is a subsystem

associated to the root subsystem Q1.

Proposition 2.13 If A° is symmetric, then the relation ~ in A', defined by a: ~ 3 if and only

if B € AL, is of equivalence.

Proof {a} is a connection from « to itself and therefore a ~ cv.

If a ~ B and {a1,as,...,0a2,, agn4+1} is & connection from « to 3, then
2
{6 nal + -+ 5a2n+1a _505271—1-17 —50[2n, ey _5042}

is a connection from B to a in case 8"y + - - - + 62, + bz, 11 = 3, and

{—52n041 — o = 0Q2n41,0Q2n41,002n, - - -, 5042}
in case 62"ay + - - - + 0%a, + Sap1 = —fB. Therefore B ~ a.
Finally, suppose o ~ 8 and 8 ~ v, {a1,aa,...,aa,, @2n41} is a connection from « to S and

{B1,. -, Pam+1} is a connection from S to 7. If m # 0, then

{o, ..., 02041, B2, ..., Bamt1}
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is a connection from « to 7y in case 62"aq + - - - + 62a, + das,p1 = B, and

{alv ey O2pt1, _ﬁ27 B _62m+1}

in case 62"ay + -+ + 0%2an, + dag,p1 = —B. If m =0, then v € £3 and so

{O[l, a2, ...,02n, a2n+1}

is a connection from « to 7. Therefore, a ~ v and ~ is of equivalence. [J

Proposition 2.14 Let o be a nonzero root and suppose A° is symmetric. Then Al is a root

subsystem.

Proof If 3 € A}, then there exists a connection {ay, s, ..., Q2p,, @2,11} from a to B. It is clear
that {a1,ag,...,qon, @oni1} also connects a to —3 and therefore —3 € AL. Let £1,32,83 €
Al U {0} be such that (81 + B2) € A and By + B2 + 683 € AL If 1 =0, as 6(B1 + B2) € A°
then B2 # 0 and there exists a connection {aj,as,...,qo,, @2,t1} from « to B2 We have
{ag,@9,...,a9,11,0, B3} is a connection from a to By +63 in case 62"y +- - -+ 820, + 000,11 =
B2 and {a1, @z, . .., a2,41,0, —B3} in case §?"aq +- -+ 8%, + a2, 11 = — 2. S0 B1+P2+083 =
B2 + B3 € AL. Suppose 81 # 0, then there exists a connection {1, as,...,a2,,a,+1} from
a to By. Hence, {a1,as,...,a2,41, 02,83} is a connection from a to 81 + B2 + §83 in case
82"y + - + 6200, + dagny1 = B and {ag,a,. .., q0ny1, — P2, —P3} in case 8"y + - +
§?aon + daion 11 = —B1. Therefore, 81 + B2 + 683 € AL. O

3. Decompositions

In this section, we will show that for a fixed ag € A!, the subsystem TAéo associated to the

root subsystem A}, is an ideal of 7.

Lemma 3.1 The following assertions hold.

(1) Ifa,B € A with [T, Ts] # 0, then « is connected with f3.

(2) Ifa,B €A, o€ A and [LY, T3] # 0, then « is connected with 3.

(3) Ifa,B e A, a €AY and [Tp, L2] # 0, then « is connected with 3.

(4) Ifa,B € A, o, 8 € A° and [Lg,L%] # 0, then « is connected with f3.

(5) If a, B € A! such that « is not connected with 3, then [To, T5] = 0, [Lg,TE] = 0 and
[T5, LY = 0 if furthermore o € A°. If o, 3 € A' such that a is not connected with j, then
(LY, L%] = 0 if furthermore o, € A°.

Proof (1) Suppose [Ty, T5] # 0, by Lemma 2.8 (1), one gets §(a+ 3) € A°U{0}. If a + 3 =0,
then 8 = —a and so « is connected with 3. Suppose a + 8 # 0. Since a + 3 € A?, one gets
{a, 5, —da} is a connection from « to §.

(2) Suppose [L2,Tjs] # 0, by Lemma 2.8 (2), one gets 6(a+ ) € AL U{0}. If a + 3 =0,
then 8 = —a and so « is connected with 3. Suppose a + 3 # 0. Since o + 3 € A, we obtain
{a,0,—da — 63} is a connection from « to f.

(3) Suppose [T, L%] # 0, by Lemma 2.8 (3), one gets 6(8 + «) € AL U{0}. If B+ a =0,
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then B = —« and it is clear that « is connected with 3. Suppose 8+ o # 0. Since 8+ a € Al,
one gets {f, —da — 63,0} is a connection from [ to «. By the symmetry, we get « is connected
with g.

(4) Suppose L3, LY] # 0, by Lemma 2.8 (4), one has §(a + ) € A° U {0}. If a + 8 = 0,
then 8 = —a and so «a is connected with 3. Suppose o + 8 # 0. Since o + 3 € A°, one gets
{a, 5, —da} is a connection from « to §.

(5) It is a consequence of Lemma 3.1 (1), (2), (3) and (4). O

Lemma 3.2 Ifa, € A are not connected, then {Ta,T_a,TE} =0.

Proof If [T,,,T_,] = 0, it is clear. One may suppose that [T, T o] # 0 and {Ta, T_q, T3} #
0. So either {T_o, T3, To} # 0 or {T5,T0,T-o} # 0, contradicting Lemma 3.1(5). Hence,
{To,T_a, T3} = 0.0

Lemma 3.3 Fix ag € A' and suppose A is symmetric. For « € A, and 8,7 € A' U{0}, then
the following assertions hold.

(1) If{T,,T3,T,} # 0 then 3, v, o+ B+ 6y € A, U{0}.

(2) If{T),To,Tp} # 0 then~, B, v +a+ 8 € AL, U{0}.

(3) If{Tp,T,,To} # 0 then 3, v, B+~ + b € AL, U{0}.

Proof (1) It is easy to see that [Ty, Tps] # 0, for a € A} and g € A* U{0}. By Lemma 3.1 (1),
one gets a ~ (3 in the case 8 # 0. From here, 5 € Aéo U {0}. In order to complete the proof, we
will show v, a + 8+ 6y € A}, U{0}. We distinguish two cases.

Case 1. Suppose a + 8+ dy = 0. It is clear that o + 8 + 0y € A}, U{0}. The fact that
{To, To, To} = 0 and {T,,T_o,To} = 0 for a € A! gives us v # 0. By Lemma 2.8 (1), one gets
S(a+B) € AY. As a+ B = -5, {a, 3,0} would be a connection from « to v and we conclude
veAl, u{0}

Case 2. Suppose a + 3+ dv # 0. We treat separately two cases.

Suppose a+ 3 # 0. By Lemma 2.8 (1), one gets §(a+3) € AY and so {«, 3,7} is a connection
from a to a+ 8+ 7. Hence a4+ 6y € AL, U{0}. In the case v # 0, {a, B, —0ax — 63 — v} is
a connection from « to v. So vy € Al . Hence v € A} U {0}.

Suppose a + 8 = 0. Then necessarily v € A}XO U {0}. Indeed, if v # 0 and « is not
connected with v, by Lemma 3.2, {T,,,T3,Ty} = {Ta,T-w,Ty} = 0, a contradiction. We also
have o + 3 + &y = 6y € AL, U{0}.

(2) The fact that [T, T, ] # 0 implies by Lemma 3.1 (1) that a ~ -y in the case v # 0. From
here, v € A}, U{0}. In order to complete the proof, we will show 3, v + a + 68 € AL U{0}.
We distinguish two cases.

Case 1. Suppose v+ a + 08 = 0. It is clear that v+ a + 65 € A}XO U {0}. The fact that
{To, To, To} = 0 and {T,,T_o,Tp} = 0 for a € A! gives us 8 # 0. By Lemma 2.8 (1), one has
y+a €A Asy+a = —68, {a,7,0} would be a connection from «a to B and we conclude
B e Al U{o}.

Case 2. Suppose 7+ a+ 68 # 0. We treat separately two cases.
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Suppose v + a # 0. By Lemma 2.8 (1), one gets v+ « € A and so {a,~, 3} is a connection
from « to y+a+d5. Hence y+a+408 € AéOU{O}. In the case 8 # 0, we have {«,y, —0a—dvy— L}
is a connection from a to 63. So 3 € A}, . Hence € AL, U{0}.

Suppose v + « = 0. Then necessarily 5 € Aéo U {0}. Indeed, if 8 # 0 and « is not
connected with 8, by Lemma 3.2, {T,,T,,T3} = {T_4,Ts, T3} = 0, a contradiction. We also
have v + o+ 68 =08 € AL, U{0}.

(3) By the definition of 6-JLT'S, one has {Ts, Ty, Ta} C {Ta, T3, Ty} +{Ty,Ta,Ts}. So either
{T., T3, Ty} #0or {T,,T,,Ts} # 0. By Lemma 3.3 (1) and (2), one gets 3,7 € AL, U{0}. Next
we will show that 8+~ + do € AL U{0}. We treat separately three cases.

Case 1. Suppose 3 # 0. Then 8 € Aio. By Lemma 3.3 (1), one has 8+ v+ da € A}lo U {0}.

Case 2. Suppose 8 =0 and y # 0. Then v € A}, . By Lemma 3.3(2), one has § +~ + da €
AL, U{0}.

Case 3. Suppose f=0and v =0. Then S+ v+ da = da € A}xo. We also have f+ v+ da €
AL, U{0}. O

Lemma 3.4 Fix oy € A and suppose A° is symmetric. For o, 3,7 € A}MU{O} with a+B+dy =
0 and 7,e € A* U {0}, the following assertions hold.

(1) If {{T%a.Tp, Ty}, 1>, Tc} #0, then 7, ¢, T + de € AL, U{0}.

(2) If{T..{T.,Ts, Ty}, T;} #0, then 7, €, e + 67 € A, U{0}.

(3) If{T;, T, {Ts,T3,T,}} #0, then 7, ¢, 7+ € € A} U{0}.

Proof (1) From the fact that o+ 8+ 6y =0, {To,To,To} = 0 and {T,,T—n,To} = 0 whenever
a € A', one may suppose that at least two distinct elements in {a, 3,7} are nonzero and one
may consider the case {Tn,T3,Ty} #0, a+ 8 # 0 and v # 0. Since

O #{{TaaTﬂuT’y}7T‘r7Te} - {TaaTﬁ7{T’y7TTaTE}}_
{Tva {TOUTBa T‘f‘}vTe} - 6{T’YaTTa {TavT,@7TE}}7

any of the above three summands is nonzero. In order to complete the proof, we firstly will show
7, € € Ay, U{0}. We distinguish three cases.

Case 1. Suppose {Tw,T3,{Ty,T-,Tc}} # 0. As v # 0 and {T,,T;,T.} # 0, Lemma 3.3 (1)
shows that 7, € are connected with v in the case of being nonzero roots and so 7, ¢ € A}XO U {0}.

Case 2. Suppose {Ty,{Tw,T3,T-},Tc} # 0. As a+ 3 # 0 and v # 0. So either a # 0 or
f # 0. By Lemma 3.3 (1) and (2), one has 7,e € A}, U{0}.

Case 3. Suppose {1y, T, {Tn, T3, Te}} # 0. As o+ # 0 and v # 0. So either o # 0 or
f # 0. By Lemma 3.3 (1) and (2), one has 7,e € A}, U{0}.

Finally, we will show 7+ de € AL, U{0}. From the fact that a4 846y = 0, {Tp,To, To} = 0
and {{Tn,T3, Ty}, Tr,Te} # 0, let us suppose that at least one element in {7, €} is nonzero. So
either 7 € AL or e € AL . Then {{T%,,T3,T,},T;,Tc} C {To, T, T.}. By Lemma 3.3 (2) and
(3), one has 7 + de € AL, U{0}.

(2) From the fact that o+ 8+ dy = 0, {Tp,To,To} = 0 and {T,,T-n,To} = 0 whenever

a € A', one may suppose that at least two distinct elements in {a, 3,7} are nonzero and one
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may consider the case {T,,T3,T} #0, a+ 5 # 0 and v # 0. Since

0 #{Tev {TavTﬁva}vTr} C {TaaTﬁv {Te»Tw»Tf}}_
6{T€7T’y7 {TaaTﬁaTT}} - {{TaaTB7TE}7T’Y7TT}7

any of the above three summands is nonzero. In order to complete the proof, we firstly will show
T, €€ Aio U {0}. We distinguish three cases.

Case 1. Suppose {Tn,T5,{Te,T,T-}} # 0. As v # 0 and {T.,T,, T} # 0, Lemma 3.3(2)
shows that €, 7 are connected with + in the case of being nonzero roots and so ¢, 7 € AL U {0}.

Case 2. Suppose {T¢, Ty, {Tw,Tp,T;}} # 0. As o+ # 0 and v # 0. So either a # 0 or
8 # 0. By Lemma 3.3 (1) and (2), one has e, 7 € A} U{0}.

Case 3. Suppose {{To,Tp,T.}, Ty, T-} # 0. As o+ [ # 0 and v # 0. So either o # 0 or
f # 0. By Lemma 3.3 (1) and (2), one has e,7 € A} U{0}.

Finally, we will show e+ d7 € A}, U{0}. From the fact that o+ 8+ 6 = 0, {Tp, Ty, To} = 0
and {Tc,{T,,T3,T,},T-} # 0, let us suppose that at least one element in {e,7} is nonzero. So
either e € AL or 7 € AL . Then {T.,{Ts, 13,7y}, T-} C {T., Ty, T-}. By Lemma 3.3 (1) and
(3), one has e + 67 € AL, U {0}.

(3) By the definition of §-JLTS, one has

0 7é {TT7T€7 {TaaTBaT’y}} C {{TaaTﬁzT'y}aTTvTe} + {T€7 {TavTﬁaT'y}7TT}~
Suppose {{Tn, 3,1y}, Ty, Te} # 0, by Lemma 3.4 (1), one has 7, €, 7 + de € A}IO U {0}. Suppose

{T..{T..Ts,T,},T:} # 0, by Lemma 3.4 (2), one has 7, ¢, e+ 7 € AL, U{0}. Therefore, in these
two cases, we get 7, €, T+ e € AL U{0}.

Lemma 3.5 Fix g € A'and suppose A° is symmetric. If oq,az,03 € AL U {0} with
a1+ as+dag=0andeec Al \Aio, then the following assertions hold.

(l) [{Tcn s Toas s Ta3}7 T?] =0.

(2) In case€ € A° then [{Tw,,Tu,, Tas}, L2 = 0.

(3) [[{Toq ) Tazv TOés }a TO]v Tg] =0.
Proof (1) From the fact oy + ag + daz = 0, {1y, To, To} = 0 and {T,,, T_o, Tp} = 0 for a € A,

one gets if ag = 0 then it is clear that [{Ta,, Tu,, Tas b T¥] = 0. Let us consider the case ag # 0.
By the definition of §-Jordan Lie algebra, we have

[{TOQ s TQQ ) TO&g }7 Tg] C 6[[Ta1 ) Ta2]7 [Ta:w Tg“ + [Tasa HTOQ ) TCY2]7 TEH (34)

Let us consider the first summand in (3.4). As a3 # 0, one has a3 € A}, . For e € A\ Al
and Lemma 3.1 (5), one easily gets [Tu,, Te] = 0. Therefore, [[Tw,, Tas], [Tas, Te)] = 0.

Let us now consider the second summand in (3.4), it suffices to verify that

[Toss [Tay s Tas ], Tel] = 0.

39

To do so, we first assert that [[Tw,,Tw,],Te)] = 0. Indeed, by the definition of §-Jordan Lie
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algebra, we have
HTOq ) Ta2]7 TE] C 5[Ta17 [Tam TgH - [TOQa [TOM ) Tg]], (35)

where a1, ap € AL U{0}, €€ AP\ Al . In the following, we distinguish three cases.
Case 1. oy # 0 and ap # 0. As a; € A} and € € A* \ A} , by Lemma 3.1 (1), one gets

a0’
[Ta,,Te] = 0. As ay € A, and € € A'\ Al , by Lemma 3.1 (1), one gets [Ty,,T¢] = 0. Therefore
by (3.5), one can show that [[Ty,,Ta,], Te] = 0.

Case 2. oy # 0 and ap = 0. As a; € A} and € € A' \ A} , by Lemma 3.1 (1), one gets
[Tw,,Te] = 0. That is [Ta,, [Tw,, 7] = 0. As ay = 0, [Ta,,T%] = [To, 75 C L).. By Lemma
3.1(5), one gets [Ta,, [Tny, Te]] = 0. Therefore, by (3.5), one can show that [Ty, , Tw,], T¢) = 0.

Case 3. a3 = 0 and as # 0. As as € A}lo and € € A! \Aé607 by Lemma 3.1 (1), one gets
[Tw,,Te] = 0. That is [Tn,, [Ta,, T5]] = 0. As a1 = 0, [Tn,,T¢] = [Ty, T¢] C LY.. By Lemma
3.1(5), we get [Twy, [Ta,,Te]] = 0. Therefore, by (3.5), one can show that [[Ty,,Ta,], Te] = 0.

SO [Toss [[Tay, Tas)s Te]]=0 is a consequence of [Ty, , Ta,], 7] = 0. By (3.4), one gets
[{Tal ) Taz y Tag }7 TE] =0.

The proof is completed. [

(2) From the fact ay + as + dag = 0, {To,To, To} = 0 and {T,, T o, To} = 0 for a € A,
one gets if a3 = 0 then it is clear that [{Ta,, Tu,, Tas }» L] = 0. Let us consider the case as # 0.
Note that

{Tor Tans Tas b Le] € 01Ty, Tan)s [Tag, LE]] = [Tag, [[Tay, Tas), Le)- (3.6)

Let us consider the first summand in (3.6). As az # 0, one gets [[Tu,, Tas], [Tas, LY]] = 0
by Lemma 3.1(5). Let us now consider the second summand in (3.6). As either a; # 0 or
ag # 0, by the definition of §-Jordan Lie algebra, the fact [Ty, L] C Tz and Lemma 3.1(5),
we obtain that [Ty, [Ta,, Ta,), L2]] = 0. So, the second summand in (3.6) is also zero and then
{Ta1: Toss Tas }s Lg] = 0.
(3) It is a consequence of Lemma 3.5 (1), (2) and
[[{Tfh s Tass Ta3 }v TO]’ T?] - 6[{Ta1 T, Tas }7 [T07 TE]] - [T07 [{T(Nl s Tass Taa }a TE]]

Definition 3.6 A §-JLTS T is said to be simple, if {T,T,T} # 0 and its only ideals are {0}
and T

Theorem 3.7 Suppose AY is symmetric, the following assertions hold.
(1) For any ag € A, the subsystem

Thy, = Toar, ©Vay,

of T associated to the root subsystem A}, is an ideal of T'.

(2) IfT is simple, then there exists a connection from « to 3 for any a, 3 € AL
Proof (1) Recall that

Toay, = spang {({Ta, T, Ty} s a+ B+ 87 = 0; o, B,7 € AL, U{0}} € Ty
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and VA‘I‘*“O = ®7€Aéo T,. In order to complete the proof, it suffices to show that
{Tay,, T,T} C Tyy .
We first check that {TA&0 ,T,T} C Ty, - It is easy to see that
{Tar, T, T} = {Tons, ® Vi, T.T} = {Tyar , T, T} + {Vay, T, T}.
Next, we will show that {TO’ALO ,T,T} C TALO' Note that

{TO,A})(O 5 T7 T} :{T(LA}xO 3 TO b (@aeAlTa)v TO @ (EBQEAl Ta)}
:{TO,A({ZO 3 T07 TO} + {TO,A}XO 5 TOa @aeAlTa}+
{Toay,» Gaenr T, To} +{Toay > BaenrTa, Bpen T}

Here, it is clear that {TO,ALO,TmTO} C {To, Ty, To} = 0. Taking into account {TO’ALO,TO,TQ},
for @ € A', Lemma 3.4 (1) and the fact that either o € AL or o ¢ Al , give us that
{TO,A}XOaTOaTa} C Vi, or {To,AéO,To,Ta} = 0. Similarly, one gets that {TQA}IO,TQ,TO} C Vay,
or {TO,A}!())TMTO} = 0. Next, we will consider {T07A'110,TQ,T5}, where o, 8 € A'. We treat five
cases.

Case 1. If a € A}lo, B e A}]O and a + 68 = 0, then one has {TO,A}XOaTouT,@} C TOJ\}IO'

Case 2. f e € A}, , B € A}, and oo+ 68 # 0, since A}, is a root subsystem, one gets

{TO,AQO,TaaTﬁ} C VA}IO.

Case 3. If « € A}, and 3 ¢ Al , by Lemma 3.4 (1), one has {TO,A;O,TmTﬁ} =0.
Case 4. If B € Aég and o ¢ Al | by Lemma 3.4 (1), one has {TO,A;O,TmTﬁ} =0.

g

Case 5. If ¢ A and oo ¢ AL, by Lemma 3.4 (1), one has {T()’Aéo,TmTﬁ} =0.

ag?
Therefore, {TO,A}%,T7 T} C Tay, -
Next, we will show that {VAéO , T, T} C Tay, - It is obvious that
Var » T, T} ={®qen, Ty, To © (Baenr Ta), To © (PaenrTa)}
={®rear, Ty, To, To} + {Syeny, Ty To, Saen Ta b+
{@fye/\}m Ty, ®aenTa, To} + {@ye/\;o Ty, ®aenrTo, BpenrTp}.

Here, it is clear that {T’,, Ty, To} C VAéO’ for v € Aio. Next, we will consider {T’,, Ty, T, }, for
v € AL ae Al. We treat three cases.

o’
Case 1. If y e AL, a & A}, by Lemma 3.3 (1), one has {T,, Ty, T} = 0.
Case 2. If y € A})W a € ALO and v + da # 0, by Aéo is a root subsystem, one has

{T,T5, Ta} C Vay, .

Case 3. If y e AL, @ € A, and v+ da =0, it is clear that {7, T, Ts} C ToﬁA(l)LO.
Hence, {T,,T0,Ta} C Ty, for v € AL, a € Al Similarly, it is easy to get {T,, Ty, To} C Thy, s
for v € A}, a € A'. At last, we will consider {@,\/EA}XOT,Y7EBO(EA1T(X,@ﬁeAlTB}, for v € A},
a € Al and 5 € AL, We treat five cases.

Case 1. If y e AL, ae AL, B e Al and v+ a+ 8 =0, one gets {T,, Ty, T3} C Toas, -
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Case 2. If’yeA})WaEAl B €A and v+ a+ 68 # 0, one gets

g’ @
{®yenr, Ty @aecn Ta, Bpenr T} C Vay -

Case 3. If ye AL, a € A} and 8 ¢ Al , by Lemma 3.3 (1) and (2), one gets

«Q?
{T,,To,Tp} = 0.

Case 4. If y € AL, a ¢ A}, and 8 € A}, by Lemma 3.3 (1) and (3), one gets

ap? ag?
{T,,T.,Ts} = 0.

Case 5. If ye AL, a € A} and B & Al , by Lemma 3.3 (1), one gets {T, T, T3} = 0.
So, {VAéO,T, T} C Tay, - Therefore, {TAéovTv T} C Tas, Is a consequence of {TQA}M,T, T} C
TAio and {VAio ,T,T} C TAéO' Consequently, this proves that TA}xo is an ideal of T.

(2) The simplicity of T implies TAéO =T. Hence Aao = AL
Theorem 3.8 Suppose A° is symmetric. Then for a vector space complement U of

spang {{T,Ts, T} : @ + B+ 6y = 0, where «, 3,7 € A U {0}} in Ty,

we have

T=U+ > I,

[a]eAl/~

where any I,) is one of the ideals TALO of T described in Theorem 3.7. Moreover
Ute): T iy} = {Ljags L), T = AT Lo L1} = 0 if [o] 7 [B].

Proof Let us denote & :=spang{{Tn,Ts,T,} : a + B+ §y = 0, where «, 8,7 € A' U{0}} in
Ty. By Proposition 2.13, we can consider the quotient set A'/ ~:= {[a] : @ € A'}. By denoting
I[a] = TA}N T(L[a] = T07Ai and V[a] = VA}N one gets I[a] = TO,[a] ¥ V[a]~ From

T=To® (BaerrTa) = (U+ &) © (DacrrTa),

it follows

BaerrTe = Sajeat/~Via)y &0 = Z T0,[a)>
[a]EA /~

indent which implies

T:U+£O®(@QGA1TQ):U+ Z I[a]a
[a]eAl/~

where each [, is an ideal of T' by Theorem 3.7.
Next, it is sufficient to show that {Ij4], T, I;5} = 0 if [a] # [5]. Note that,
Uja): T 111} ={To,10) @ Via)s To @ (Syen 1), To,15) @ Vig}
={To,a1> To, To, 11} + {T0,ja1> T, Vi) } + {Tofa)s Brear Ty, To 513+
{To,ja1> year Ty, Vig ) + {Viaps To, To, o1} + {Viag, To, Vigi 3+
{Vlap, ®remr Ty, To 51} + {Via], ©remr Ty, Vig 1
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Here, it is clear that {T¢ [}, T0,To,15} C {T0,T0,To} = 0. If [a] # [B], by Lemmas 3.3 and
3.4, it is easy to see {Tp [a];T0,Vig} = 0, {To,ja)s ©yerr Ty, Vigt = 0, {Va);To, To,i5} = O,
{Via): To. Vig1} = 0, {Via), ®renr Ty, To g1} = 0, {Via), ®renr Ty, Vg } = 0.

Next, we will show {7} (o], ®yenr Ty, To,;5} = 0. Indeed, for {Tn,,Tay, Tas}t € To,ja) With
a1, a2, a3 € ALU{0}, a1+as+6as =0, and for {Tp,,Tp,,Ts,} € Tp 15 with 1, Ba, B3 € AéU{O},
81+ B2 + dB3 = 0, by the definition of §-JLTS, one gets

{To1s Ton, Tas b, ®rent Ty, {1y, T, Ty }}
- 5{TB1 I, {{Tal ) TazaTas}v @veAlTw Tﬁs}}"’
{{{TOZNT(JQ?TQB}’@7€A1T77T51}7T52’T133}+
{Tﬁlv {{Tal s Tass Tas}v ®76A1T’w Tﬁz}a TB3}~

By Lemma 3.4, it is easy to see that
{Tﬁl Ty, {70y Tos s Tas } Byenr Ty, I, =0,
({70 Tas Ty}, SyenrTy, T, h T, Tﬂe,} =0,
{Tﬂl ) {{Tal s Loy s Tag }7 Dyear T’yv TﬁQ }a Tﬁs} =0,
for ay, e, a3 € AL U{0}, a; +ag + daz =0, 81, 2,83 € Aé U {0}, B1 + B2+ 083 =0, [a] # [4].
So {Ija), T 11 } = 0 if [a] # [8].
A similar argument gives us {/[o], I15], T} = {7, I1a}, [ 15} = 0 if [a] # [B].
Definition 3.9 The annihilator of a §-JLTS T is the set Ann(T) = {z € T : {z,T,T} = 0}.

Corollary 3.10 Suppose A° is symmetric. If Ann(T) = 0, and {T,T,T} = T, then T is the
direct sum of the ideals given in Theorem 3.8, T' = ®[q1ent /L[]

Proof From {T',T,T} =T and Theorem 3.8, we have
U+ Y haU+ Y Lo U+ Y Gwh=U+ Y I
[a]€AY /)~ [a]eAr/~ [a]eAl /)~ [a]eAr /)~

Taking into account U C Tp, Lemma 3.3 and the fact that {I;o), T, 15} = {Ija), L5, T} =
{T, 1), I15} = 0 if [a] # [B] (see Theorem 3.8) give us that U = 0. That is,

T= Y Iq
[a]eAt/~
To finish, it is sufficient to show the direct character of the sum. For 2 € Ij5)N )7 seat/~ I,
pra
using again the equation {I}), T, I;3} = 0 for [a] # [3], we obtain
{x,T, I[a]} = {:&T, Z I[g]} =0.
(Bleal/n~
pra
SO{.%‘TT}—{xTI Z Al/NI[[;]}—{.%'Tf[a]}-l-{xTz[ﬂ Al/N ﬁ]}_0+0—0
That is, z € Ann(T') = 0. Thus :v = 0, as desired.
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