On Monogeny and Epigeny Classes of Modules
Received:October 16, 2002  
Key Word: Monogeny class   Epigeny class   generalized power series ring  
Fund ProjectL:Supported by National Natural Science Foundation of China (10171082) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P.R.C.
Author NameAffiliation
LIU Zhong-kui Dept. of Math.
Northwest Normal University
Lanzhou
China 
Hits: 1784
Download times: 945
Abstract:
      Let (S, ≤) be a strictly totally ordered monoid, and M and N be left R modules. We show the following results: (1) If (S, ≤) is finitely generated and satisfies the condition that 0≤S for any s ∈S, then Epi([[RS,≤]][[MS,≤]]) = Epi([[RS,≤]][[NS,≤]]) if and only if Epi(M) = Epi(N); (2) If (S,≤) is artinian, then Mono([[RS,≤]][MS,≤])= Mono([[RS,≤]][NS,≤]) if and only if Mono(M) = Mono(N).
Citation:
DOI:10.3770/j.issn:1000-341X.2004.04.003
View Full Text  View/Add Comment  Download reader