An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph
Received:January 04, 2007  Revised:September 07, 2007
Key Words: total coloring   adjacent vertex distinguishing total coloring   adjacent vertex distinguishing total chromatic number   Lov\'{a}sz local lemma.  
Fund Project:the Natural Science Foundation of Gansu Province (No.3ZS051-A25-025); the Foundation of Gansu Provincial Department of Education (No.0501-03).
Author NameAffiliation
LIU Xin Sheng College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, China 
AN Ming Qiang College of Science, Tianjin University of Science and Technology, Tianjin 300457, China 
GAO Yang College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, China 
Hits: 6642
Download times: 2119
Abstract:
      Let $G=(V,E)$ be a simple connected graph, and $|V(G)|\geq2$. Let $f$ be a mapping from $V(G)\cup E(G)$ to $\{1,2,\ldots,k\}$. If $\forall uv\in E(G), f(u)\neq f(v), f(u)\neq f(uv), f(v)\neq f(uv)$; $\forall uv$, $uw\in E(G)(v\neq w)$, $f(uv)\neq f(uw)$; $\forall uv \in E(G)$ and $u\neq v$, $C(u)\neq C(v)$, where $$C(u)=\{f(u)\}\cup\{f(uv)|uv\in E(G)\}.$$ Then $f$ is called a $k$-adjacent-vertex-distinguishing-proper-total coloring of the graph $G$($k$-$AVDTC$ of $G$ for short). The number $\min\{k|k\mbox{-}AVDTC ~\mbox{of}~G\}$ is called the adjacent vertex-distinguishing total chromatic number and denoted by $\chi_{at}(G)$. In this paper we prove that if $\Delta(G)$ is at least a particular constant and $\delta\geq32\sqrt{\Delta\ln\Delta}$, then $\chi_{at}(G)\leq\Delta(G) 10^{26} 2\sqrt{\Delta\ln\Delta}$.
Citation:
DOI:10.3770/j.issn:1000-341X.2009.02.018
View Full Text  View/Add Comment