On Friendly Index Sets of Cyclic Silicates
Received:October 16, 2014  Revised:July 08, 2015
Key Word: vertex labeling   friendly labeling   cordiality   friendly index set   cycle   CS$(n, m)$   arithmetic progression  
Fund ProjectL:Supported by the National Natural Science Foundation of China (Grant No.11371109).
Author NameAffiliation
Zhenbin GAO College of Science, Harbin Engineering University, Heilongjiang 150001, P. R. China 
Sinmin LEE Deptartment of Computer Science, San Jose State University, San Jose CA95192, USA 
Guangyi SUN College of Science, Harbin Engineering University, Heilongjiang 150001, P. R. China 
Geechoon LAU Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), Johor 85000, Malaysia 
Hits: 1646
Download times: 1746
Abstract:
      Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. A labeling $f : V(G)\rightarrow Z_{2}$ induces an edge labeling $ f^{*} : E(G)\rightarrow Z_{2}$ defined by $f^{*}(xy) = f(x) + f(y)$, for each edge $ xy\in E(G)$. For $i \in Z_{2}$, let $ v_{f}(i) =|\{v \in V(G) : f(v) = i\}|$ and $e_{f}(i) = |\{e\in E(G) : f^{*}(e) = i\}|$. A labeling $f$ of a graph $G$ is said to be friendly if $| v_{f}(0)-v_{f}(1) | \leq 1$. The friendly index set of the graph $G$, denoted ${\rm FI}(G)$, is defined as $\{|e_{f}(0) - e_{f}(1)|$: the vertex labeling $f$ is friendly$\}$. This is a generalization of graph cordiality. We investigate the friendly index sets of cyclic silicates CS$(n, m)$.
Citation:
DOI:10.3770/j.issn:2095-2651.2015.06.001
View Full Text  View/Add Comment  Download reader