Weighted Representation Asymptotic Basis of Integers
Received:December 26, 2014  Revised:March 20, 2015
Key Word: additive basis   representation function  
Fund ProjectL:Supported by the National Natural Science Foundation of China (Grant No.11471017).
Author NameAffiliation
Yujie WANG School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China 
Min TANG School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China 
Hits: 1466
Download times: 1374
Abstract:
      Let $k_{1}, k_{2}$ be nonzero integers with $(k_{1}, k_{2})=1$ and $k_{1}k_{2}\neq-1$. Let $R_{k_{1}, k_{2}}(A, n)$ be the number of solutions of $n=k_{1}a_{1}+k_{2}a_{2}$, where $a_{1}, a_{2}\in A$. Recently, Xiong proved that there is a set $A\subseteq\mathbb{Z}$ such that $R_{k_{1}, k_{2}}(A, n)=1$ for all $n\in \mathbb{Z}$. Let $f: \mathbb{Z}\longrightarrow \mathbb{N}_{0}\cup\{\infty\}$ be a function such that $f^{-1}(0)$ is finite. In this paper, we generalize Xiong's result and prove that there exist uncountably many sets $A\subseteq \mathbb{Z}$ such that $R_{k_{1},k_{2}}(A, n)=f(n)$ for all $n\in\mathbb{Z}$.
Citation:
DOI:10.3770/j.issn:2095-2651.2015.06.012
View Full Text  View/Add Comment  Download reader