The Existence of Nodal Solutions for the Half-Quasilinear $p$-Laplacian Problems
Received:January 05, 2016  Revised:November 23, 2016
Key Word: Bifurcation   Half-Quasilinear problems   Nodal solutions   $p$-Laplacian  
Fund ProjectL:Supported by the National Natural Science Foundation of China (Grant No.11561038) and the Natural Science Foundation of Gausu Province (Grant No.145RJZA087).
Author NameAffiliation
Wenguo SHEN Department of Basic Courses, Lanzhou Institute of Technology, Gansu 730050, P. R. China 
Hits: 388
Download times: 552
Abstract:
      In this paper, we study the existence of nodal solutions for the following problem: $$\align &-(\varphi_{p}(x'))'=\alpha(t) \varphi_{p}(x^{+})+\beta(t)\varphi_{p}(x^{-}) +ra(t)f(x),\,\,00$ for $s\neq0$, and $f_{0}, f_{\infty}\not\in (0,\infty)$, where $$f_{0}= \lim_{|s|\rightarrow0} f(s)/\varphi_{p}(s),~~f_{\infty}=\lim_{|s|\rightarrow+\infty} f(s)/\varphi_{p}(s).$$ We use bifurcation techniques and the approximation of connected components to prove our main results.
Citation:
DOI:10.3770/j.issn:2095-2651.2017.02.013
View Full Text  View/Add Comment  Download reader