The Norm of a Class of Singular Integral Operators from $L^{\infty}$ onto Bloch-Type Spaces
Received:March 21, 2017  Revised:March 01, 2018
Key Word: operator norm   singular integral operator   Bloch-type space  
Fund ProjectL:Supported by the Natural Science Foundation of Zhejiang Province (Grant No.LY14A010021).
Author NameAffiliation
Xiaoyang HOU Basic Department, Wenzhou Business College, Zhejiang 325035, P. R. China
Department of Mathematics, Wenzhou University, Zhejiang 325035, P. R. China 
Yi XU Department of Mathematics, Wenzhou University, Zhejiang 325035, P. R. China 
Hits: 181
Download times: 244
Abstract:
      In this paper, we obtain the exact norm of a class of singular i/ntegral operators $Q_\alpha, \alpha>0$, defined by $$Q_\alpha f(z)=\alpha \int_{\mathbb{D}}\frac{f(w)}{(1-z\bar{w})^{\alpha+1}}\d A(w),$$ from $L^{\infty}(\mathbb{D})$ onto Bloch-type space $\mathcal{B}_\alpha$ over the unit disk $\mathbb{D}$, which is an extension of the Bergman projection $P$. We also consider the norm for this operator from $C(\overline{\mathbb{D}})$ onto the little Bloch-type space $\mathcal{B}_{\alpha,0}$.
Citation:
DOI:10.3770/j.issn:2095-2651.2018.03.004
View Full Text  View/Add Comment  Download reader