Verified Computation of Eigenpairs in the Generalized Eigenvalue Problem for Nonsquare Matrix Pencils
Received:May 07, 2019  Revised:October 09, 2019
Key Word: generalized eigenvalue problem   nonsquare pencil   invariant subspace   verified numerical computation  
Fund ProjectL:Partially Supported by JSPS KAKENHI (Grant No.JP16K05270) and the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.
Author NameAffiliation
Shinya MIYAJIMA Faculty of Science and Engineering, Iwate University, Ueda, Morioka, 020-8551, Japan 
Hits: 27
Download times: 43
Abstract:
      Consider an optimization problem arising from the generalized eigenvalue problem $Ax = \lambda Bx$, where $A,B \in \mathbb{C}^{m \times n}$ and $m > n$. Ito et al. showed that the optimization problem can be solved by utilizing right singular vectors of $C := [B,A]$. In this paper, we focus on computing intervals containing the solution. When some singular values of $C$ are multiple or nearly multiple, we can enclose bases of corresponding invariant subspaces of $C^HC$, where $C^H$ denotes the conjugate transpose of $C$, but cannot enclose the corresponding right singular vectors. The purpose of this paper is to prove that the solution can be obtained even when we utilize the bases instead of the right singular vectors. Based on the proved result, we propose an algorithm for computing the intervals. Numerical results show property of the algorithm.
Citation:
DOI:10.3770/j.issn:2095-2651.2020.01.007
View Full Text  View/Add Comment  Download reader