王冰,王晓光.当前状态数据下单变点危险率治愈模型的拟极大似然估计[J].数学研究及应用,2020,40(3):320~330
当前状态数据下单变点危险率治愈模型的拟极大似然估计
Pseudo-Maximum Likelihood Estimation in the Hazards Cure Model with a Single Change Point for Current Status Data
投稿时间:2019-06-06  修订日期:2019-10-10
DOI:10.3770/j.issn:2095-2651.2020.03.009
中文关键词:  当前状态数据  变点危险率模型  治愈  拟极大似然
英文关键词:current status data  change-point hazard model  cure fraction  pseudo-maximum likelihood
基金项目:国家自然科学基金(Grant No.11471065).
作者单位
王冰 大连理工大学数学科学学院, 辽宁 116024 
王晓光 大连理工大学数学科学学院, 辽宁 116024 
摘要点击次数: 32
全文下载次数: 22
中文摘要:
      变点危险率模型已受到广泛关注.它不仅可以更加直接地显示治疗效果或医学上的突破,也可以提供这些事件发生的时间点.在这篇文章中,我们提出当前状态数据下的单边点危险率治愈模型并探讨了这个模型的估计方法.我们建立了估计的大样本理论并通过模拟评估有限样本下的估计.
英文摘要:
      The change-point hazards model has received much attention, since it can not only display the impacts of treatments or medical breakthroughs more directly, but also provide the time point when those impacts occur. In this paper, we propose the single change-point hazards model for current status survival data with long-term survivors and investigate the estimation for the proposed model. Large-sample properties of the estimators are established. Simulation studies are carried out to evaluate the finite-sample performance of the estimation.
查看全文  查看/发表评论  下载PDF阅读器