韩广国.区传递的$2-(v, k, 1)$ 设计与单群$E_6(q)$[J].数学研究及应用,2010,30(4):581~588
区传递的$2-(v, k, 1)$ 设计与单群$E_6(q)$
Block-Transitive $2$-$(v,k,1)$ Designs and Groups $E_6(q)$
投稿时间:2008-11-11  最后修改时间:2009-05-15
DOI:10.3770/j.issn:1000-341X.2010.04.002
中文关键词:  设计  区传递  点本原  自同构群.
英文关键词:block design  block-transitive  point-primitive  automorphism group.
基金项目:国家自然科学基金(Grant No.10871205),中国博士后基金(Grant No.20080441323),浙江省教育厅项目(Grant No.Y200804780).
作者单位
韩广国 杭州电子科技大学数学研究所, 浙江 杭州 310018; 解放军信息工程大学信息工程学院, 河南 郑州 450002 
摘要点击次数: 1466
全文下载次数: 1164
中文摘要:
      讨论区传递的$2-(v, k, 1)$设计的分类问题.特别地, 讨论自同构群的基柱为李型单群$E_6(q)$的区传递$2-(v, k, 1)$设计,得到如下结论: 设${\cal D}$为 一个$2-(v, k, 1)$设计, $G\leq$Aut$(\cal D)$是区传递, 点本原但非旗传递的. 若 $q>$ $(3(k_rk-k_r 1)f)^{1/3}$(这里$k_r=(k,v-1)$, $q=p^f$, $p$是素数, $f$是正整数), 则 ${\rm Soc}(G)\not\congE_6(q)$.
英文摘要:
      This article is a contribution to the study of block-transitive automorphism groups of $2$-$(v, k, 1)$ block designs. Let ${\cal D}$ be a $2$-$(v, k, 1)$ design admitting a block-transitive, point-primitive but not flag-transitive automorphism group $G$. Let $k_r=(k,v-1)$ and $q=p^f$ for prime $p$. In this paper we prove that if $G$ and ${\cal D}$ are as above and $q>$ $(3(k_rk-k_r 1)f)^{1/3}$, then $G$ does not admit a simple group $E_6(q)$ as its socle.
查看全文  查看/发表评论  下载PDF阅读器