Initial Bounds for a Subclass of Analytic and Bi-Univalent Functions Defined by Chebyshev Polynomials and $q$-Differential Operator
Received:October 15, 2018  Revised:May 22, 2019
Key Word: analytic functions   bi-univalent functions   coefficient estimates   Fekete-Szeg\"{o} inequality   Chebyshev polynomials   $q$-differential operator  
Fund ProjectL:Supported by the National Natural Science Foundation of China (Grant Nos.11561001; 11271045), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No.NJYT-18-A14), the Nature Science Foundation of Inner Mongolia of China (Grant No.2018MS01026), the Higher School Foundation of Inner Mongolia of China (Grant No.NJZY19211) and the Natural Science Foundation of Anhui Provincial Department of Education (Grant Nos.KJ2018A0833; KJ2018A0839), Provincial Quality Engineering Project of Anhui Colleges and Universities (Grant Nos.2018mooc608).
Author NameAffiliation
Dong GUO Foundation Department, Chuzhou Vocational and Technical College, Anhui 239000, P. R. China 
En AO School of Mathematics and Statistics, Chifeng University, Inner Mongolia 024000, P. R. China 
Huo TANG School of Mathematics and Statistics, Chifeng University, Inner Mongolia 024000, P. R. China 
Liangpeng XIONG School of Mathematics and Statistics, Wuhan University, Hubei 430072, P. R. China 
Hits: 29
Download times: 52
Abstract:
      In this paper, we investigate the coefficient estimate and Fekete-Szeg\"{o} inequality of a subclass of analytic and bi-univalent functions defined by Chebyshev polynomials and $q$-differential operator. The results presented in this paper improve or generalize the recent works of other authors.
Citation:
DOI:10.3770/j.issn:2095-2651.2019.05.007
View Full Text  View/Add Comment  Download reader