史应光.基于xL(a)n-1(x)之零点的(0,1,…,m-2,m)插值[J].数学研究及应用,1995,15(3):319~328
基于xL(a)n-1(x)之零点的(0,1,…,m-2,m)插值
(0, 1, … ,m - 2, m) Interpolation on the Zeros of xL(a)n-1(x)
投稿时间:1993-07-25  
DOI:10.3770/j.issn:1000-341X.1995.03.001
中文关键词:  
英文关键词:Birkhoff interpolation  Laguerre Polynomial  regularity.
基金项目:
作者单位
史应光 中国科学院计算中心 
摘要点击次数: 1654
全文下载次数: 895
中文摘要:
      本文给出了基于xL(a)n-1(x)之零点的(0,1,…,m-2,m)插值的正则性的充要条件,其中xL(a)n-1(x)为(n-1)次Laguerre多项式。同时基函数(若存在的话)的明显表达式也在文中给出。再者,还证明了,若该插值问题有无穷多个解,则其解的一般形式为f0(x)+Cf1(x)这里C为任意常数。
英文摘要:
      A necessary and sufficient condition for regularity of (0, 1, …, m - 2, m) in-terpolation on the zeros of xL(a)n-1(x)(a>-1 ) in a nianagealbe form is established, where xL(a)n-1(x) is the (n-1)- th Laguerre polynomial . Meanwhile, the explicit representationof the fundamental polynomials, when they exist, is given. Moreover, we show that if theproblem of (0, 1, …, m - 2, m) interpolation has an infinity of solutions then the generalform of the solutions is f0(x)+Cf1(x) with an arbitrary constant C.
查看全文  查看/发表评论  下载PDF阅读器