魏利,周海云.增生映射的扰动理论对与广义(p,q)-Laplace算子相关的非线性椭圆系的应用[J].数学研究及应用,2010,30(5):909~919
增生映射的扰动理论对与广义(p,q)-Laplace算子相关的非线性椭圆系的应用
The Applications of Perturbations on Accretive Mappings to Nonlinear Elliptic Systems Related to Generalized (p,q)-Laplacian
投稿时间:2008-09-19  最后修改时间:2009-05-14
DOI:10.3770/j.issn:1000-341X.2010.05.020
中文关键词:  增生映射  广义(p,q)-Laplace算子  非线性椭圆系.
英文关键词:accretive mapping  generalized $(p,q)$-Laplacian  nonlinear elliptic systems.
基金项目:国家自然科学基金(Grant No.10771050),河北省自然科学基金(Grant No.A2010001482),河北省教育厅科学研究计划项目(Grant No.2010125).
作者单位
魏利 河北经贸大学数学与统计学院, 河北 石家庄 050061 
周海云 军械工程学院应用数学与力学研究所, 河北 石家庄 050003 
摘要点击次数: 1599
全文下载次数: 1260
中文摘要:
      本文利用Calvert和Gupta关于非线性增生映射值域之和的扰动理论,研究了一类与广义(p,q)-Laplace算子相关的、具Neumann边值的非线性椭圆系解的存在性的抽象结论.本文所研究的椭圆系及所用方法推广和补充了以往的研究成果.
英文摘要:
      Using perturbation results on the sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we present some abstract results for the existence of the solutions of nonlinear Neumann elliptic systems which is related to the so-called generalized $(p,q)$-Laplacian in this paper. The systems discussed in this paper and the method used extend and complement some of the previous work.
查看全文  查看/发表评论  下载PDF阅读器