纪培胜,杨晓玲,陈建慧.交换环上的严格上三角代数上的双导子[J].数学研究及应用,2011,31(6):965~976
交换环上的严格上三角代数上的双导子
Biderivations of the Algebra of Strictly Upper Triangular Matrices over a Commutative Ring
投稿时间:2010-04-08  最后修改时间:2010-05-28
DOI:10.3770/j.issn:1000-341X.2011.06.002
中文关键词:  双导子  严格上三角矩阵  代数.
英文关键词:biderivation  strictly upper triangular matrix  algebra.
基金项目:国家自然科学基金 (Grant No.10971117).
作者单位
纪培胜 青岛大学数学科学学院, 山东 青岛 266071 
杨晓玲 青岛大学数学科学学院, 山东 青岛 266071 
陈建慧 青岛大学数学科学学院, 山东 青岛 266071 
摘要点击次数: 1245
全文下载次数: 1477
中文摘要:
      设$N_n(R)$是带有单位元的交换环$R$上的$n\times n$严格上三角矩阵构成的代数.$R$-双线性映射$\phi :N_n(R)\times N_n(R)\longrightarrow N_n(R)$称为双导子是指它关于每一个变元是导子.本文给出了$N_n(R)$上的中心双导子和极端双导子的定义,证明了当$n\geq 5$时,$N_n(R)$每一个双导子可分解为一个内双导子,一个中心双导子和和一个极端双导子之和.
英文摘要:
      Let $N_n(R)$ be the algebra consisting of all strictly upper triangular $n\times n$ matrices over a commutative ring $R$ with the identity. An $R$-bilinear map $\phi :N_n(R)\times N_n(R)\longrightarrow N_n(R)$ is called a biderivation if it is a derivation with respect to both arguments. In this paper, we define the notions of central biderivation and extremal biderivation of $N_n(R)$, and prove that any biderivation of $N_n(R)$ can be decomposed as a sum of an inner biderivation, central biderivation and extremal biderivation for $n\geq 5$.
查看全文  查看/发表评论  下载PDF阅读器